
Structure of Matter

Problem Sheet 3 Answers
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So substituting for A and B in the Lennard-Jones expression,
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(the 2 is because each atom is bounded on either side, so has twice the potential
energy)
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(NB Remember to double the potential due to two forces from either side)

4. (a) U =
A

x12
− B
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→ dU

dx
= −12

A
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B
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= 0 at equilibrium

also at equilibrium x = 1, so −12A+ nB = 0

→ B = 12A/n

So U(x = 1) = −ε = A−B = A− 12A/n

→ ε = A(12/n− 1)

(b) For n = 1 → ε = A · 11,
for n = 6 → ε = A,

Assuming repulsive term is the same in both cases (i.e. value of A is similar), this
suggests that the binding potential for the ionic bonding is 11× stronger.

5. (a) Collision just happens if centre of particles is within 2a (the radius of both com-
bined) of the other.



σ = 4πa2

(NB this is different from the expression given in the lectures because a is the
radius here, whereas the diameter d was used in lec. 5.)

(b) Volume swept out by this cross-section is 4πa2l

Number of particles in this volume = 4πa2ln
(n is number density)

If particles is assumed to not be deflected significantly from its path, this is the
number of collisions in this path length too.

(c) So average distance between collisions λm = l/4πa2ln = 1/4πa2n
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= 5.63× 10−8 m = 56 nm

(f) mean time between collisions τm =
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=
5.63× 10−8

440
= 1.28× 10−10 s = 128 ps
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the same as for an ideal monoatomic gas

7. Volume available to a real gas = (V − bN),

fractional change = bN and % change from ideal gas = bN/V

but b ∼= 4Vm where Vm is the effective collisional volume of the molecule, i.e. Vm = 4
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= 3.02× 105 Pa ≈ 3 atm



8. van der Waal’s equation: P =
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dividing one expression by the other (V − bN)/2 = 2V/6
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