Structure of Matter

Problem Sheet 1 Answers

1. (a) $N=\frac{P V}{k_{B} T}=\frac{0.5 \times 10^{3}}{1.38 \times 10^{-23} \cdot 300}=1.22 \times 10^{25}$
(b) $V=\frac{N_{m} R T}{P}=\frac{3 \times 8.31 \times 263}{10^{2}}=65.6 \mathrm{~m}^{3}$
(c) $V=\frac{8.31 \times 273}{1.01 \times 10^{5}}=0.0224 \mathrm{~m}^{3}=22.4$ litres $=22,400 \mathrm{cc}$
2. $P=N k_{B} T / V=n k_{B} T$, so $P_{e}=P_{i}=5 \cdot 10^{19} \times 1.38 \cdot 10^{-23} \times 10^{8}=6.9 \cdot 10^{4} \mathrm{~Pa}$
$P_{\text {Total }}=P_{e}+P_{i}=1.38 \cdot 10^{5} \mathrm{~Pa}=1.37$ atmospheres
$U_{i}=U_{e}=\frac{3}{2} N k_{B} T=\frac{3}{2} P V=\frac{3}{2} \times 6.9 \cdot 10^{4} \times 10^{3}=1.03 \cdot 10^{8} \mathrm{~J}$
$U_{\text {Total }}=U_{i}+U_{e}=2.07 \cdot 10^{8} \mathrm{~J}$
3. (a)

Figure 1: default
(b) Using $\frac{P_{1} V_{1}}{T_{1}}=N k_{B}=$ constant, so
(1) $\frac{1 \cdot 0.5}{300}=\frac{1.5 \cdot 0.5}{T_{1}} \quad \rightarrow \quad T_{1}=450 \mathrm{~K} \quad \rightarrow \Delta T=150 \mathrm{~K}$
(2) $\frac{1.5 \cdot 0.5}{450}=\frac{1.5 \cdot 1}{T_{2}} \rightarrow T_{2}=900 \mathrm{~K} \quad \rightarrow \Delta T=450 \mathrm{~K}$
(3) $\frac{1.5 \cdot 1}{900}=\frac{1 \cdot 1}{T_{3}} \quad \rightarrow \quad T_{3}=600 \mathrm{~K} \quad \rightarrow \Delta T=-300 \mathrm{~K}$
(4) $\frac{1 \cdot 1}{300}=\frac{1 \cdot 0.5}{T_{4}} \rightarrow T_{4}=300 \mathrm{~K} \quad \rightarrow \Delta T=-300 \mathrm{~K}$
(c) $\Delta U=\frac{3}{2} N k_{B}\left(T_{1}-T_{0}\right)=\frac{3}{2}\left(P_{1} V_{1}-P_{0} V_{0}\right)$ so,
(1) $\Delta U=\frac{3}{2}\left(1.5 * 1.01 \times 10^{5} * 0.5-1.0 * 1.01 \times 10^{5} * 0.5\right)=3.79 \times 10^{4} \mathrm{~J}$
(2) $\Delta U=\frac{3}{2}\left(1.5 * 1.01 \times 10^{5} * 1.0-1.5 * 1.01 \times 10^{5} * 0.5\right)=11.36 \times 10^{4} \mathrm{~J}$
(3) $\Delta U=\frac{3}{2}\left(1.0 * 1.01 \times 10^{5} * 1.0-1.5 * 1.01 \times 10^{5} * 1.0\right)=-7.64 \times 10^{4} \mathrm{~J}$
(4) $\Delta U=\frac{3}{2}\left(1.0 * 1.01 \times 10^{5} * 0.5-1.0 * 1.01 \times 10^{5} * 1.0\right)=-7.64 \times 10^{4} \mathrm{~J}$
(d) $\Delta U_{\text {total }}=0$ (take care of rounding errors!)
(e) $\Delta W=-\int P d V$
(1) $d V=0 \quad \rightarrow \quad \Delta W=0$
(2) $P=$ cont, so $\Delta W=-P \Delta V=-1.5 * 1.01 \times 10^{5} *(1.0-0.5)=-7.57 \cdot 10^{4} \mathrm{~J}$
(3) $d V=0 \quad \rightarrow \quad \Delta W=0$
(4) $\Delta W=-P \Delta V=-1.0 * 1.01 \times 10^{5} *(0.5-1.0)=5.05 \cdot 10^{4} \mathrm{~J}$
(f) So ΔW by gas $=-7.57 \cdot 10^{4}+5.05 \cdot 10^{4}=2.52 \cdot 10^{4} \mathrm{~J}$
(g) In each stage heat enters or leaves the system (as well as the work done). During part (1) and (2) heat must have been put into the system.
(h) The work done is the area bounded by the path in the PV diagram.

Figure 2: Work done by gas in (2)

Figure 3: Work done on gas in (4)

Figure 4: Total work done by gas
4. (a) $N=\frac{P V}{k_{B} T}=\frac{1.01 \cdot 10^{5} \times 1}{1.38 \times 10^{-23} \cdot 300}=2.42 \times 10^{25}$ molecules. $N_{m}=N / N_{A}=2.42 \times 10^{25} / 6.02 \times 10^{23}=40.1$ moles $m=N_{m} * A$ (atomic mass) $\mathrm{g}=40.1 * 40.0=1.6 \mathrm{~kg}$
(b) $C_{V}=\frac{3}{2} N k_{B}=\frac{3}{2} N_{m} R=\frac{3}{2} * 40.1 * 8.31=500 \mathrm{JK}^{-1}$ $C_{P}=\frac{5}{2} * 40.1 * 8.31=833 \mathrm{JK}^{-1}$ $C_{P} / C_{V}=1.67$.
(c) $c_{V}=C_{V} / m=500 / 1.6=312 \mathrm{JK}^{-1} \mathrm{~kg}^{-1}$ $c_{P}=C_{V} / m=833 / 1.6=521 \mathrm{JK}^{-1} \mathrm{~kg}^{-1}$ $c_{P} / c_{V}=1.67$.
(d) $C_{V_{m}}=C_{V} / N_{m}=500 / 40.1=12.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ $c_{P_{m}}=C_{V} / N_{m}=833 / 40.1=20.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ $C_{P_{m}} / C_{V_{m}}=1.67$.
5. (a) Blocks end up at same temp T and have same change in heat, so $C(T-323) * 5+C(T-273) * 10=0 \quad \rightarrow \quad 15 T=(273 * 10)+(323 * 5)$ $\rightarrow T=289.7 \mathrm{~K}=16.7^{\circ} \mathrm{C}$
(b) Mass exhaled each breath $=0.5 * 1.3 \times 10^{-3}=6.5 \times 10^{-4} \mathrm{~kg}$ Energy lost per breath $=1020 * 6.5 \times 10^{-4} *(37-20)=11.3 \mathrm{~J}$ Total per hour $=11.3 * 20 * 60=13.6 \mathrm{~kJ}$ (equivalent to 3.8 W)
(c) Heat flow due to radiation $=\sigma\left(T_{1}^{4}-T_{2}^{4}\right) * A=5.67 \times 10^{-8}\left(308^{4}-293^{4}\right) * 5 \times 10^{-2}=$ 4.6 W

So heat loss in one hour $=4.6 * 3600=16.6 \mathrm{~kJ}$
(d) Total energy change $=50 * 100 * 360=1.8 \times 10^{7} \mathrm{~J}$

So $\Delta T=\Delta Q / C=\frac{1.8 \times 10^{7}}{1020 * 1.3 \times 10^{-3} * 4 \times 10^{6}}=3.4^{\circ} \mathrm{C}$
6. (a) $\mathrm{d} Q=0$ so first law becomes $\mathrm{d} U=-P \mathrm{~d} V=-\frac{N k_{B} T}{V} \mathrm{~d} V$ (using ideal gas EOS) also $U=\frac{n_{d}}{2} N k_{B} T \rightarrow \mathrm{~d} U=\frac{n_{d}}{2} N k_{B} \mathrm{~d} T$
equate the above for $\mathrm{d} U \rightarrow-\frac{{ }^{2} k_{B} T}{V} \mathrm{~d} V=\frac{n_{d}}{2} N k_{B} \mathrm{~d} T$ divide through to get: $\frac{\mathrm{d} T}{T}=-\frac{2}{n_{d}} \frac{\mathrm{~d} V}{V}$.
(b) $\ln T=-\frac{2}{n_{d}} \ln V+c_{1}=\ln V^{-2 / n_{d}}+\ln c_{2}\left(c_{1}\right.$ and c_{2} are constants) $\rightarrow T V^{2 / n_{d}}=c_{2}$.
(c) Using $c_{3} * T=P V \quad \rightarrow \quad P * V * V^{2 / n_{d}}=c_{2} / c_{3}=c_{4}$ (c_{3} and c_{4} are constants) $\rightarrow \quad P V^{\left(2+n_{d}\right) / n_{d}}=c_{4}$
but $\gamma=\frac{C_{P}}{C_{V}}=\frac{\left(\frac{n_{d}}{2} N k_{B}+N k_{B}\right)}{\frac{n_{d}}{2} N k_{B}}=\frac{n_{d}+2}{n_{d}}$
So $P V^{\gamma}=c_{4}$ For ideal gas $n_{d}=3$, so $\gamma=5 / 3$
(d) $P_{1} V_{1}^{\gamma}=P_{0} V_{0}^{\gamma} \rightarrow P_{1}=P_{0}\left(V_{0} / 2 V_{0}\right)^{\gamma}=P_{0}(1 / 2)^{5 / 3} \approx 0.315 P_{0}$

For isotherm, $P_{1} V_{1}=P_{0} V_{0} \rightarrow P_{1}=P_{0}\left(V_{0} / 2 V_{0}\right)=0.5 P_{0}$
So adiabat is steeper than the isotherm.

Figure 5: Isotherm and adiabat
7. (a) $\mathrm{d} Q=0 \rightarrow \mathrm{~d} W=\mathrm{d} U=C_{V} d T$ $\rightarrow \Delta W=\int W=\int U=C_{V}\left(T_{1}-T_{0}\right)$
(b) $\Delta W=-\int P \mathrm{~d} V=-\int A V^{-\gamma} \mathrm{d} V=-\frac{A}{1-\gamma}\left[V^{1-\gamma}\right]_{V_{0}}^{V_{1}}$ where A is a constant, but $A V^{-\gamma}=P$, so $\Delta W=\frac{1}{(\gamma-1)}\left[P_{i} V_{i}\right]_{0}^{1}=\frac{1}{(\gamma-1)}\left(P_{1} V_{1}-P_{0} V_{0}\right)$
(c) $\gamma-1=\left(n_{d}+2\right) / n_{d}-1=2 / n_{d}$, so $\Delta W=\frac{1}{(\gamma-1)}\left(P_{1} V_{1}-P_{0} V_{0}\right)=\frac{N k_{B}}{2 / n_{d}}\left(T_{1}-T_{0}\right)=\left(n_{d} N k_{B} / 2\right)\left(T_{1}-T_{0}\right)$ $\rightarrow \Delta W=C_{V}\left(T_{1}-T_{0}\right)$ as before
8. (a) $v_{s}=\sqrt{\frac{\gamma P}{\rho}} \rightarrow \gamma=\frac{n_{d}+2}{n_{d}}=\frac{\rho v_{s}^{2}}{P}=\frac{n m v_{s}^{2}}{n k_{B} T}$ $n_{d}+2=n_{d} \frac{m v_{s}^{2}}{k_{B} T} \rightarrow n_{d}\left(\frac{m v_{s}^{2}}{k_{B} T}-1\right)=2$ $\rightarrow \quad n_{d}=2\left(\frac{m v_{s}^{2}}{k_{B} T}-1\right)$
(b) $n_{d}=2\left(\frac{4.82 \times 10^{-26} \cdot 344^{2}}{1.38 \cdot 10^{-23} 293}-1\right)^{-1} \approx 5$
(c) air is mostly diatomic, so might expect $n_{d}=7$, but reason is explained in lec. 7

