5. Boltzmann's Law

8th May

Recap

- Lecture 0 all common states of matter made of atom (KE v PE determines state)
- Lecture I ideal gas $PV=Nk_BT$, from kinetic theory $U = \frac{1}{2} n_d Nk_BT$
- Lecture 2 zeroth law defines T
 first law dU = dQ + dW
 (for gases: dU = dQ PdV)

Recap

- Lecture 3 For gas dW = -PdV path dependent e.g isothermal $dW = -(Nk_BT) \ln(V_1/V_0)$, isobaric (followed by isochoric) $dW = -(Nk_BT) (V_1/V_0 - 1)$
- Heat capacity (HC) define dQ = C dT (also path dependent) (molar HC, $dQ = N_m C_m dT$, specific HC, dQ = m c dT)
- Ideal gas, $C_v = n_d/2 Nk_B (C_{vm} = n_d/2 R) C_p = C_v + Nk_B (C_{pm} = C_{vm} + R)$
- Adiabatic eqn of state PV^{γ} = constant, where $\gamma = C_p / C_v$
- Lecture 4 Phase Change Large change in one state variable for a small change in another (usually indicating change in internal order and associated with latent heat).

5.1 Isothermal Atmosphere

Aim: To calculate air pressure as a function of height in equilibrium

Aim: To calculate air pressure as a function of height in equilibrium

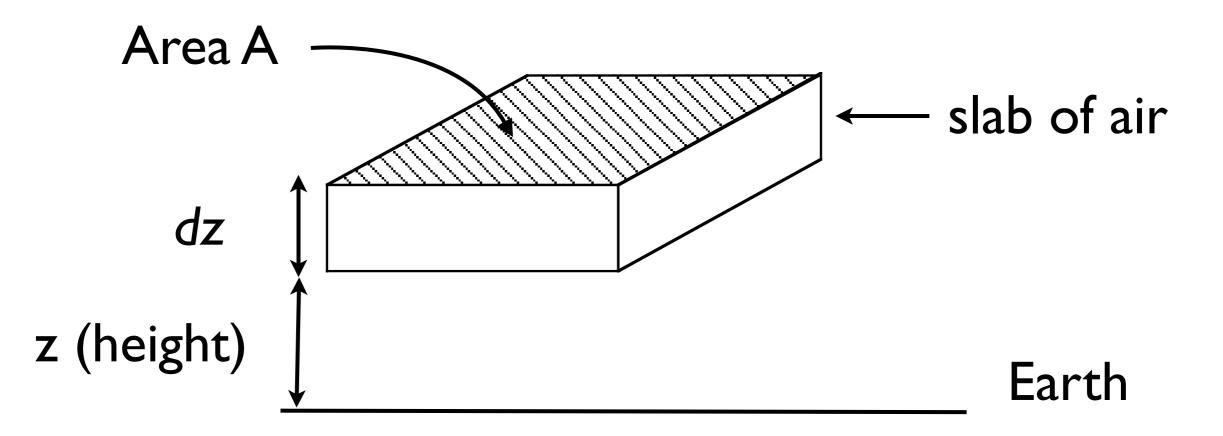
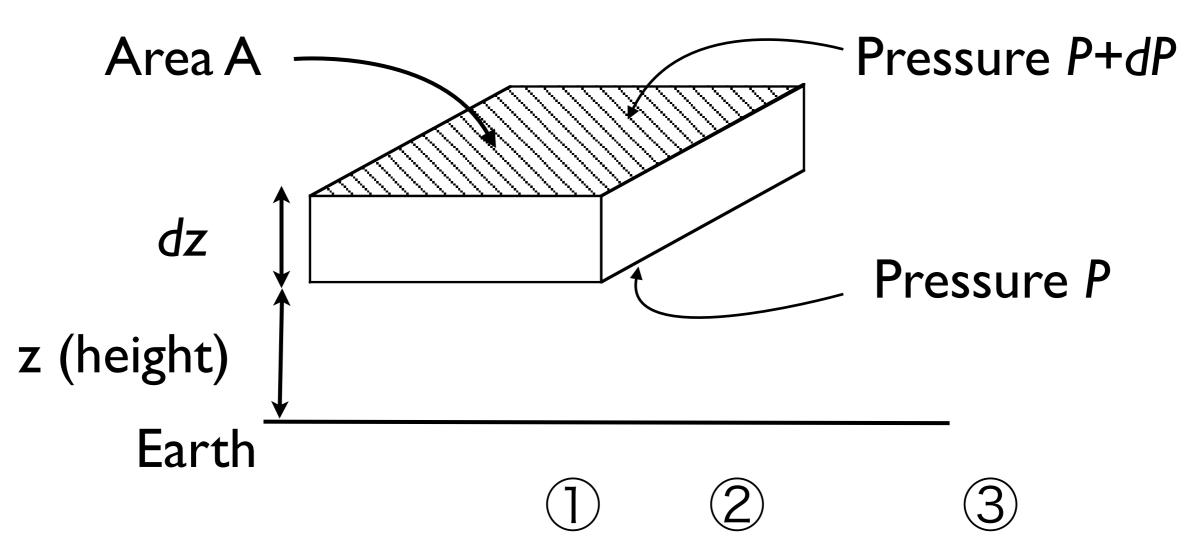


Figure I



Net upward force = $PA - (P+dP)A - \rho A dz g$

① pressure from below

(2) pressure from above (pressure is P+dP at z+dz)

[should find that dP < 0] ③ weight of slab (ρ = density) **but** in equilibrium, net force = 0 $\rightarrow \qquad PA - PA - AdP - \rho A \, dz \, g = 0$ $\rightarrow \qquad \frac{dP}{dz} = -\rho g \qquad (5.1.1)$

P falls with height.

Rewrite 5.1.1 using $\rho(z) = n(z) m$ and assume isothermal ideal gas: $P(z) = n(z) k_B T$

5.1.1
$$\rightarrow \qquad k_B T \frac{dn}{dz} = -mng$$

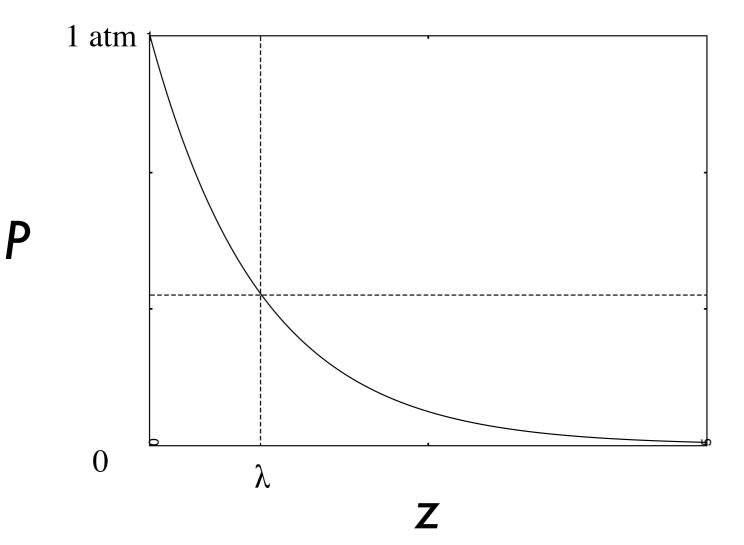
 $\rightarrow \qquad \frac{dn}{dz} = -\frac{mg}{k_B T} n$

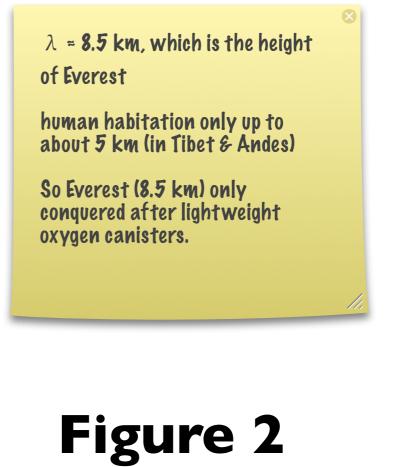
$$\therefore \quad n = n_0 \; e^{-z/\lambda}$$

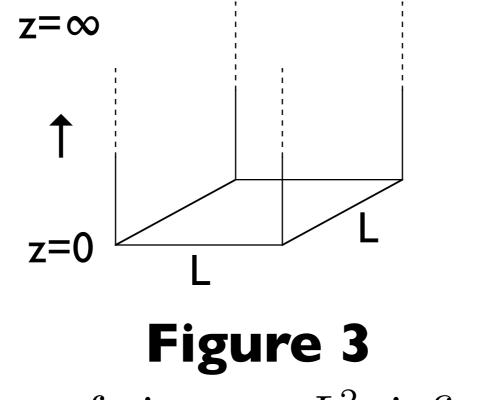
where
$$n_0 = n(z = 0)$$
 [ie. at ground level],

$$\lambda = k_B T/mg = \text{scale length}$$

also
$$P = nk_BT = P_0 e^{-z/\lambda}$$







Consider a column of air, area L^2 , infinitely high:

Number of particles between z and $z+dz = n_0 \exp(-z/\lambda)L^2 dz$

 $\therefore N = \text{total number of particles} = \int n_0 \exp(-z/\lambda) L^2 dz$ $= -n_0 L^2 \lambda [e^{-\infty} - e^0]$ $= n_0 L^2 \lambda \qquad (5.1.3)$

Under pressure

$$n_0 = \frac{P}{k_B T} = \frac{10^5}{k_B 293} = 2.5 \times 10^{25} \,\mathrm{m}^{-3}$$

Commercial airliners fly at abut 32,000 ft 9-10km, which is why airliners are pressurised, but NOTE airliners only pressurised to 0.85 Atmospheres (to keep thickness required down

So total of particles above each $m^2 = n_0 L^2 \lambda$

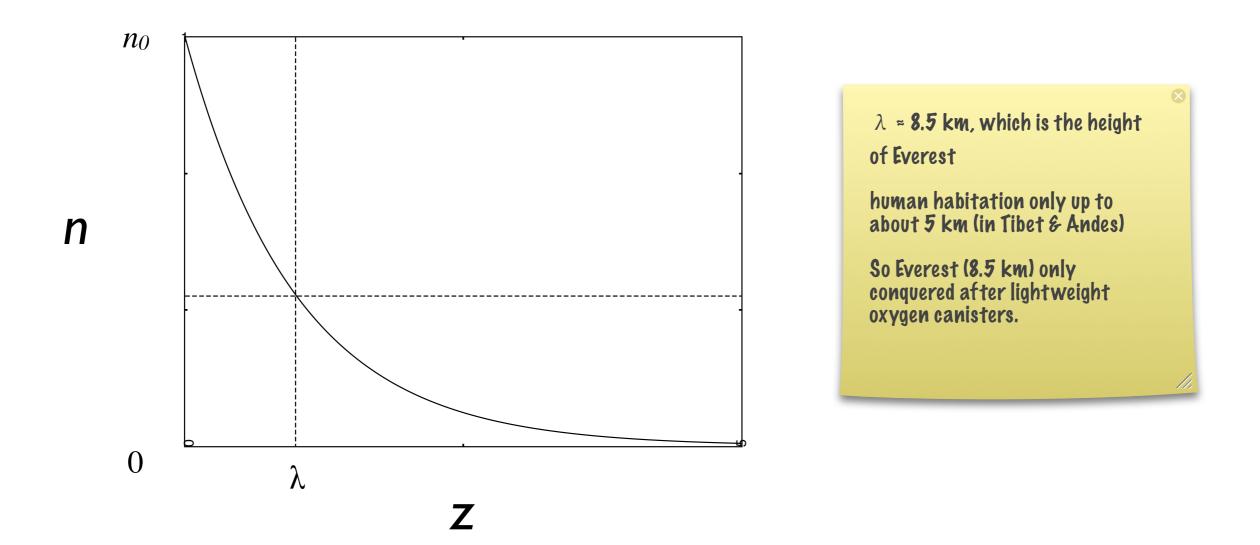
$$\approx 2.5 \times 10^{25} \times 8.5 \times 10^3 = 2.1 \times 10^{29}$$

The weight of these particles is $1.66 \times 10^{-27} * 29 * 2.1 \times 10^{29} = 10^4 kg = 10$ tonnes!

Of course the force due to 10^4 kg $\approx 10^5$ N/m⁻² = atmospheric pressure.

5.2 Particle probabilities

$$n = n_0 \ e^{-z/\lambda}$$



Probability of given molecule being in a region of the box = no. of particles in region / N

e.g. if uniformly distributed $n = N/L^3$

 $\therefore \text{ number of particles between} \\ x \text{ and } x + \delta x = n\delta x L^2 \\ = (N/L^3)\delta x L^2$

so probability of given particles being between x and $x + \delta x$:

 $p(x)\delta x = \delta x/L$

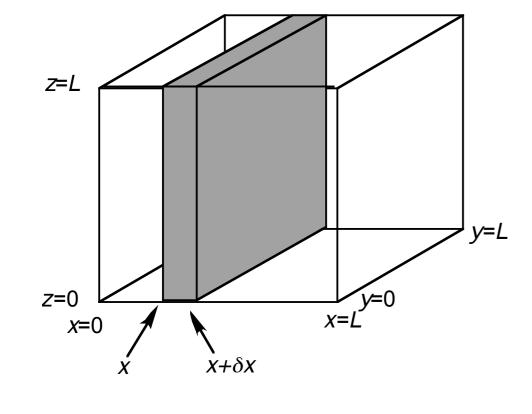


Figure 4

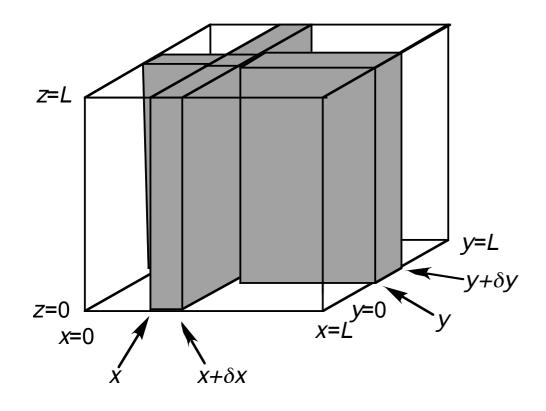


Figure 5

Number of such particles = $N\delta x\delta y/L^2$ = $(N/L^3) \times L\delta x\delta y$ (= $n \times$ volume of region)

e.g. prob. of a particle being between x and $x + \delta x$ and also between y and $y + \delta y$

$$p(x,y)\,\delta x\delta y = \delta x\delta y/L^2$$

 \therefore if two events are independent, dent,

prob. of both = $prob(1) \times prob(2)$

For isothermal atmosphere:

 $5.2.1 \rightarrow {\rm prob.}$ of particles being between $z \ \& \ z + dz$ is $p(z) \, dz$

$$p(z) = (\text{no. of particles between } z \& z + dz)/N$$

= $n_0 \exp(-z/\lambda) L^2 dz/n_0 L^2 \lambda$
= $(mg/k_B T) \exp(-mgz/k_B T) dz$ (5.2.2)

NB Particles are actually moving through out the gas, so for any given particle, this is also the probability of where you would find it through-out its history. Also note that equilibrium implies, stationary or constant state, but actually in a gas, though state variables are constant, underlying motion at atomic scale is far from stationary!

5.3 Boltzmann's Law

 $5.2.2 \rightarrow \text{prob of particles being between } z \& z + dz \propto \exp(-mgz/k_BT)dz$

but E(z) = mgz = p.e.

so
$$p(z) \propto p(E) \propto \exp(-E(z)/k_BT)$$

IN FACT generally when in thermal equilibrium,

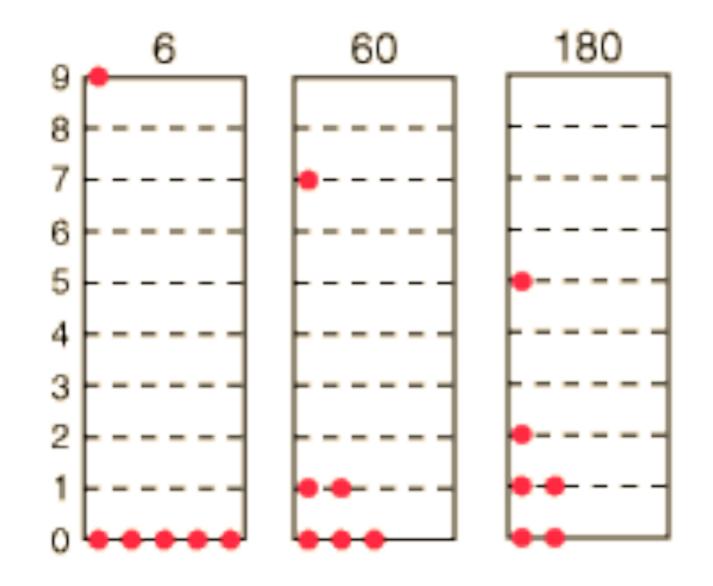
 $p(E) \propto \exp(-E/k_B T)$ (Boltzmann's Law)

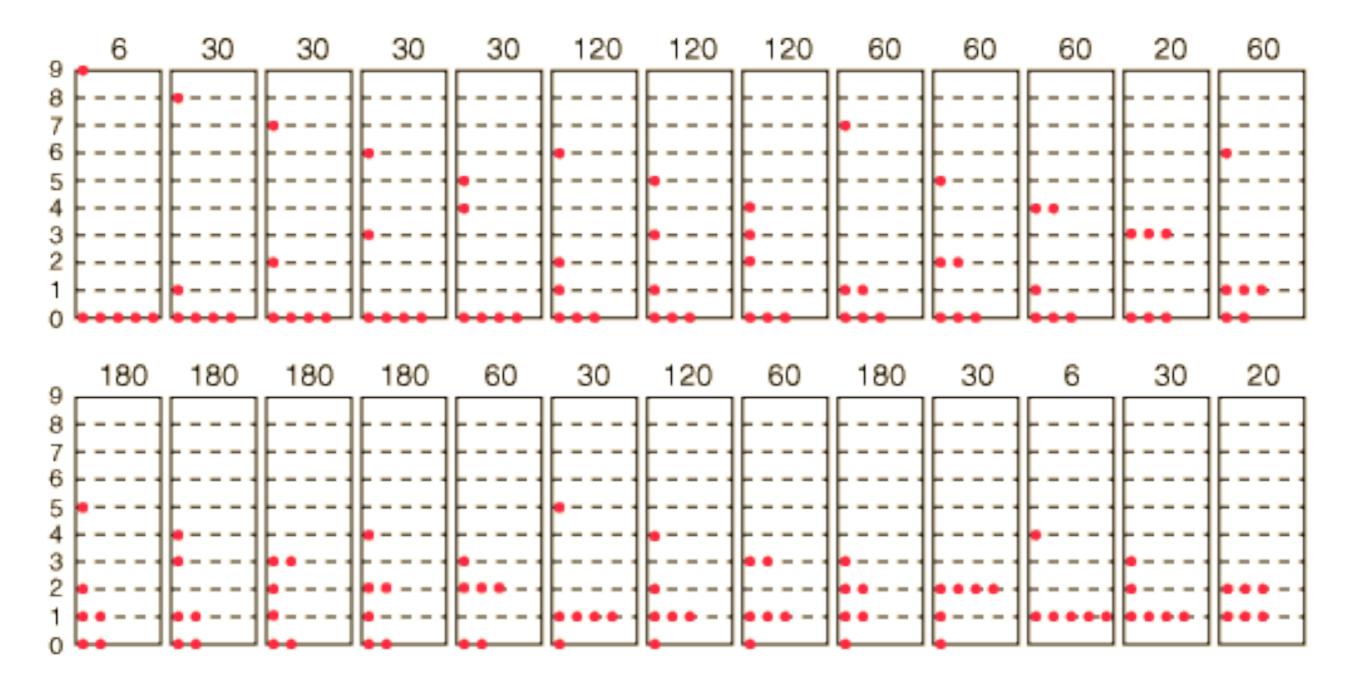
(E can be any general potential)

Counting states:

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/ disbol.html#c2

How many ways can you distribute 9 units of energy among 6 particles?





Answer: 26 distributions, but for distinguishable particles 2002 possible arrangements

Energy level number		Average
	0	2.143
	1	1.484
	2	0.989
	3	0.629
	4	0.378
	5	0.21
	6	0.105
	7	0.045
	8	0.015
	9	0.003

