4. Phase Changes 19th March

Last lecture

- For gas dW = -PdV path dependent e.g isothermal $dW = (Nk_BT) \ln(V_0/V_1)$, isobaric (followed by isochoric) $dW = (Nk_BT) (1 - V_1/V_0)$
- Heat capacity (HC) define dQ = C dT(also path dependent) (molar HC, $dQ = N_m C_m dT$, specific HC, dQ = m c dT)
- For ideal gas, $C_v = (n_d/2) Nk_B (C_{vm} = n_d/2 R)$ $C_p = C_v + Nk_B (C_{pm} = C_{vm} + R)$
- Adiabatic equation of state PV^{γ} = constant, where $\gamma = C_p / C_v$

Phase Change: Definition Phase Change = A large change in one state variable (e.g. *n*) for a small corresponding change in another (e.g. *T*).

Phase Changes usually indicate a change in internal order, and not restricted to changes of state.

(other examples, superconductivity, magnetism, crystal structure)

4.1 PVT surface for ideal gas

PVT ideal gas

PT projection

PV projection

4.2 PVT surface for real substance

PV projection

Adding heat at constant pressure

a→b: solid T rises b: starts to melt b→c: solid / liquid co-exist, T const. c→d: liquid, T rises d: starts to vapourise d→e: liquid / gas coexist, T const. e→f: gas, T rises

Figure 4

PT projection

a→b: solid T rises b: starts to melt b→c: solid / liquid co-exist,T const. c→d: liquid,T rises d: starts to vapourise d→e: liquid / gas coexist,T const. e→f: gas,T rises

Figure 5

4.3 isotherms for real substance

Isotherms on PT projection

Figure 6

In Denver (1 mile high), water boils at 95°C

On surface of mars (P = 6 mBar), no water can exist.

Isotherms on PV projection

Figure 7

4.4 Phase Changes for H₂0

PVT diagram for ice

PT projection H₂0

Figure 9

PVT diagram for ice

4.5 Latent heats

Change between phases is not instantaneous. Region exists in PT diagram where phases can coexist, whilst heat is entering or leaving the system at the same temperature. Heat required to cause complete change between phases = latent heat.

Latent heat of vaporisation L_v = heat required to change a liquid to a gas Latent heat of fusion L_f = heat required to change solid to liquid Latent heat of sublimation L_s = heat required from solid to gas for $T < T_p$ or $T > T_c$

Bond strengths & latent heat

Bond strength ϵ related to L_s ($\approx L_f + L_v$ if melting and boiling points are close.)

$$L_s = \frac{1}{2}N_0 n\epsilon$$

where N_0 = number of molecules, n = number of nearest neighbours and the $\frac{1}{2}$ is because each bond is shared.

Also $L_v/10 \lesssim L_f \lesssim L_v/30$ because melting corresponds to breaking of ~ 0.5 – 1 bond, as opposed to $n \gtrsim 11$ for evapouration.

Substance	ε (J)	L _{sm} (J mol ⁻¹)		
		Calculated	Observed	
He	0.9×10 ⁻²²	320	90	
Ne	4.8×10 ⁻²²	1700	1300	
Ar	16.5×10 ⁻²²	5900	7600	
Kr	25×10 ⁻²²	9000	10500	
H ₂	4×10 ⁻²²	1400	1050	
N ₂	13×10-22	4700	5460	

Substance	ε (J)	Temperature		
		$T=\frac{2}{3}\epsilon/k_B$	Melting	Boiling
He	0.9×10 ⁻²²	4.35		4.32
Ne	4.8×10 ⁻²²	23.19	24.63	27.23
Ar	16.5×10 ⁻²²	79.71	83.55	87.34
Kr	25×10 ⁻²²	120.77	116.15	121.45
H ₂	4×10 ⁻²²	57.97 *	13.84	20.26
N ₂	13×10-22	188.41 *	63.18	77.34

* Using $n_d = 7$, then $T_H = 24.8$, $T_N = 80.7$

Happy Easter!