Damped Simple Harmonic Motion
Equation Of Motion

Damped simple harmonic motion is simple harmonic motion with frictional or resistive force the oscillation loses energy. In many cases the damping force is:
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The force is proportional to v and is in the opposite direction of v. 

Also r is the damping constant which is defined above, r > 0, [r] = Nm-1s
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Piston filled with oil provides damping force.
The equation of is
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We get the same type of equation for damped simple harmonic motion for an LC circuit with a resistor in it.
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Comparing with
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It can be seen that
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General Solution
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Trial solution is 
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Hence 
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Where 
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Therefore 
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The general solution is the sum of these
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q can be imaginary therefore totally changing the general solution.

If we call 
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There are 3 important cases depending on the sign of 
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Case 1: Lightly Damped 
[image: image20.wmf]0

<

D



[image: image21.wmf]'

4

2

2

w

i

m

r

m

s

i

q

=

-

=


With 
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x(t) becomes      
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For x(t) to be real we need the terms in the square brackets to be complex conjugates.
If
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Then
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x(t) = Decay x Oscillation (at frequency 
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N.B
· Big r gives fast decay
· When 
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Which is simple harmonic motion

· All real “undamped” oscillators are lightly damped to some extent.

Energy Decay In Lightly Damped Simple Harmonic Motion, Q-Factor
The Q factor measure ration of energy decay in lightly damped simple harmonic motion.
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Large Q = Slow Decay

Small Q = Fast Decay

Total E in simple harmonic motion is given by 
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With 
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 is the number of cycles for energy to decay to 
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e.g.
Turning fork 
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Nano cantilever 
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Mossbanner Effect 
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Case 2: Critically Damped Simple Harmonic Motion 
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System doesn’t oscillate, it returns to its equilibrium position in the least time.
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But 2nd Order Differential Equations with equal roots needs 2 independent constants.

So 
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A & B are constants depending on the initial conditions.

[A] = m

[B] = m sec-1
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In most applications that critical damping is used to return system to equilibrium after an impulse as quickly as possible.

If the system is initially at position x=0 and its velocity after its impulse is V0
Therefore 
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Therefore 
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Least Time
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Such an example of a system is shock absorbers in a car.

Case 3: Heavily Damped Simple Harmonic Motion 
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System oscillates and returns slowly to equilibrium.
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Therefore


[image: image48.wmf]]

[

]

[

)

(

]

[

)

(

2

1

2

1

2

1

qt

qt

pt

qt

qt

pt

qt

qt

pt

e

C

e

C

pe

qe

C

qe

C

e

dt

dx

t

v

e

C

e

C

e

t

x

-

-

-

-

-

+

-

-

=

=

+

=


Assuming the same initial conditions as before
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Therefore 
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Since 
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“Slow” return to equilibrium
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