
RELATIVITY  Problems 2: Answers   16Dec04 
 
 
1. It was shown in problem 2 in the last problem sheet that on the outbound journey, 

on reaching Alpha Centauri, the spacetraveller records 10 years of his time, whilst 
his earthbound twin brother experiences 11 years of earth time (i.e. 1.1=γ ).  The 
return journey is exactly similar (except of course that the velocity is reversed – but 
this doesn’t affect γ ), so that the travelling twin will return after a total time of 20 
years have elapsed according to his clock.  The earthbound twin will record his 
brother’s return as being 22 years, and thus the earthbound twin will now be 
(genuinely!) older than his brother.  

 
 
 
 
 
 
 
 
 
 
 
 
 

2. Use the velocity addition formula 21 cvu
vu

v
′+

′+=   where u is the relative velocity 

between frames, v′ is the known velocity in the ‘moving’ frame and v is the 
resultant velocity to be calculated. 

 
 (a) An observer on the first particle sees the Lab moving with velocity 

cu 8.0−= .  The second particle moves with velocity cv 8.0−=′ in the 
‘moving’ lab frame.  So resultant velocity of second particle with respect to 

first   2228.01
8.08.0
cc
cc

v
+

−−=    →                   cv 98.0−=  . 

 
 (b) Now cu 8.0= , cv 8.0=′ , so          cv 98.0+= . 
 
 (c)  The lab observer records the relative velocity of the first particle relative to the 

second to be )8.0(8.0 cc −−+                         c6.1=  . 
 

The  point is that this is a ‘geometrical’ velocity recorded by the lab rods and clocks.  
No material particle, momentum, energy or information is actually being transferred 
at this rate.   The relativistic resultant velocity formula is applied, as in parts (a) and 
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The point here is that despite 
the apparent symmetry 
between the brothers’ 
observations of each other, 
the travelling twin 
experiences an enormous 
acceleration at the 
‘turnaround’ point in the 
journey, as is evident from 
the spacetime diagram drawn 
here from the earth 
observer’s viewpoint. 
 



(b) to situations where the velocity is known in one frame and we want to know the 
velocity observed  from another frame.  In part (c) only one frame is involved. 

 
3.    (a) Lorentz transf. of space-time coordinates in O →  coordinates in O′  
    )( ctxx β−γ=′ ; )( xcttc β−γ=′  

   where 9.09.0 =β�= cu   and 2/12 )1( −β−=γ . 
    
   )101001039.00(3.2 98 −××××−=′Ax   :     m62−=′Ax  

   )01039.010100(3.2 89 ×××−×=′ −
At   :     ns230=′At  

   )01039.0100(3.2 8 ×××−−=′Bx   :                    m230−=′Bx  
   ))100(9.00(3.2 −×−=′Bt   :        ns690=′Bt  

(b) From O′ →  O we need the inverse transformations:  i.e. uu −→  
  )101001039.00(3.2 98 −××××+=Cx :     m62+=Cx  

   )09.010100(3.2 9 ×+×= −
Ct   :      ns230=Ct  

   )01039.0100(3.2 8 ×××+−=Dx   :                    m230−=Dx  
   ))100(9.00(3.2 −×+=Dt   :        ns690−=′Bt  

(c) In O :  MeV/c5.0=p ;  2MeV/c5.0=m  

We need ( ) ( ) MeV71.05.05.0
2/1222/14222 =+=+= cmcpE  

Lorentz Transf. for ( )xpE,  are identical for those for ),( xt , so 

 MeV/c31.0)71.09.05.0(3.2 −=×−=′xp  
     
    MeV/c60.0)5.09.071.0(3.2/ =×−=′ cE  
  MeV/c32.0=′→ p in –ve x-direction;        MeV6.0=′E  
 (d) In O′ : MeV1=′K  So    MeV5.15.012 =+=+′=′ mcKE  
   and   MeV41.1])5.0()5.1[()( 2/1222/1422 =−=−′=′ cmEcp  
   So   MeV/c)5.1,4.1()/,( =′′ cEpx  
   In O : We use the inverse transformation: from O O′→ : i.e. uu −→  
     MeV/c35.6)5.19.041.1(3.2 =×+=xp  
     MeV/c37.6)41.19.05.1(3.2/ =×+=cE  
      So MeV37.6=E  
4. (a) 26 /10511.0 ceVme ×= : 

   so rest energy     JeVErest
1966 106.110511.010511.0 −×××=×=  

   and mass  ( )28

13

2
103

106.1511.0

×
××==

−

c
Erest     kg30109.0 −×=  . 

 (b) JErest
196 106.110511.0 −×××=                 pJ08.0=  . 

(c)         Rest energy of electron and positron 22 cme= , 



 So energy liberated (see (b) above) pJ08.02 ×=             
pJ16.0= . 

(d) 191919 10106.110 ××== −eVE     J6.1= . 
 
5. The flight path λ , is given by velocity times lifetime, where the lifetime is given 

in the frame of reference where the flight path is measured (the laboratory frame).  
Due to time dilation, the lifetime is dilated by the Lorentz factor γ , compared 
with the proper lifetime (as measured in the particle’s rest frame).  Hence 

πτγλ ××= v  

(a) For the pion with velocity c1.0 , ( ) 005.1)1.0(1
2/12 ≈−= −γ   

  and m101031.0005.1 168 −××××=λ     nm3= . 
(b) We need vγ  for a pion of momentum cGeV /1 .  This is most easily 

obtained from the expressions in question 8 above 

  22 mc
pc

mc
E

E
pc

v =×=γ  .    

  Hence ( ) 16869 1010310135/10 −××××=λ    nm220= . 
(c) The pion with kinetic energy 1TeV is ultra-relativistic and we can use the 

photon-like approximation pcEK == . 
i.e.  cTeVp /1=   and ( ) 168912 1010310135/10 −××××=λ  mµ220= . 

years 10×= γEt : years 111.1)/1( 2/122 =→=−= −
Etcuγ . 

 
6. The light source is at rest in frame O where the wavelength is nm650=λ (red).  

In the car driver’s frame, O′ , the wavelength is nm530=′λ (green).  Using the 

Doppler formula
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substituting the values for λ , λ ′ we get 17106 −×= msu or mphu 8104.1 ×= and 
the fine ≈  £ 9104.1 ×  or equivalent to winning the national lottery for about 30 
weeks! 

7. yreVyrJJsGW /
106.1
101.3

/101.3101 19

16
1619

×
×=×== −  

 i.e. 619

16

10200106.1
101.3

×××
×

 fissions 2710≈ nuclei per year. 

 
26106 ×=AN is the number of U235 nuclei in 235 kg. 

Thus mass of U235 required 26

27

106
10235

×
×= kg 400≈ kg.   



Since only 33% efficient, the fuel requirement   
 rtonnes/yea2.1≈   

1 kg of sea-water ( OH 2 ) contains 
216

2
3250

1
+

× kg of deuterium, so the number 

of deuterons/kg of sea-water is 22
26

10
9
1

3250
1

2
106 ≈×××

 

2 deuterons yield 4 MeV therefore energy content 19622 106.110210 −××××=  
        watersea of/2.3 kgGJ≈  

 
 
 
 


