K. Long, 23 November 2004

Relativity – Lecture 2

Foundations

Lecture 2: Foundations

2.1 The principle of relativity

The laws of physics are the same for all inertial observers

- n Einstein 1905
- n Test case:
 - **n** Electromagnetic induction:
 - n Experiment a: Coil moves over stationary magnet
 - n Experiment b: Magnet moves *over* stationary coil
 - n Current pulse in exp^t a = current pulse in exp^t b

Electromagnetic induction

Electromagnetic induction

Experiment a

Experiment a

Electromagnetic induction

Experiment b

Experiment b

Electromagnetic induction

Experiment b

Experiment b

Electromagnetic induction

Experiment b

2.2 The speed of light

- n Michelson-Moreley experiment
 - n The speed of light is isotropic
 - n See for example Alonso&Finn
- **n** Kennedy-Thorndyke experiment:
 - The speed of light is the same for all inertial observers
 - **n** See for example Taylor&Wheeler

Lecture 2: The speed of light

The speed of light is isotropic

n The Michelson-Moreley experiment:

In contradiction to observations

•

Lecture 2: The speed of light

Lecture 2: The speed of light

<u>The speed of light is the same for all inertial</u> <u>observers</u>

- **n** The Kennedy-Thorndyke experiment:
 - n Set up interferometer
 - **n** Summer: Earth's velocity relative to fixed stars *v*
 - **n** Winter: Earth's velocity relative to fixed stars -*v*
 - **n** No change in interference pattern observed
- n Speed of light is the same for all inertial observers
- n Speed of light is 'invariant'

Lecture 2: The speed of light

Lecture 2: Foundations

2.3 The principle of relativity (reworded)

- n Invariant quantities:
 - n Same NUMERICAL VALUE in all inertial frames
- **n** Covariant expressions:
 - n Take same FORM in all inertial frames
- **n** The laws of Physics are COVARIANT
- n The speed of light is INVARIANT

2.4 Practical definition of coordinate system

Lecture 2: Foundations

Synchronisation of clocks

- **n** Lattice work of rods and clocks (see McCall)
- n Synchronisation:
 - ⁿ Set each clock s.t.: $t_0 = \frac{r}{c}$
 - Send spherical light pulse from x=y=z=0 at t=0
 - Start each clock as light wave reaches it

n Since coordinate axes of S and S' coincide at t=t'=0, correct relative setting of clocks guaranteed

Lecture 2: Foundations

2.5 The light clock

- 2.6 Distances transverse to relative velocity
- **n** Rod (length 1m) set up along y axis in S
- n Rod (length 1m) set up along y' axis in S'
- n O observes length of rod in S' to be I
- n O' observes length of rod in S to be I'
- ⁿ Principle of relativity $\Rightarrow I = I'$
- n Contradiction unless I = I' = 1m

n Lorentz transformation (part 1):

TransformationInverse transformationy' = yy = y'z' = zz = z'

2.7 Time dilation (revisited)

- ⁿ Time interval between two events which take place at same point in space in S' = T'
- ⁿ Time interval between the same two events but observed from S = T
- n NB the two events do not occur at the same point when observed from S

Lecture 2: Foundations

ⁿ **Definitions:**
$$\gamma$$
 =

$$\gamma = \frac{1}{\sqrt{1-\beta^2}} \quad \beta = \frac{u}{c}$$

n Time dilation:

$$T = \gamma T'$$

2.8 Solution to problem of cosmic ray muon (revisited) Primary Isotropic flux of Zenith

- **n** Define: muon to be at rest in frame S'
 - n Two events: M
- Muon created: t' = 0Muon decays: t' = T'
 - **n** Time difference measured in S' = T'

Lecture 2: Foundations

- n Define earth frame: S
- **n** Relative velocity of S' and S: u = 0.99984c
- **n** Two events viewed from earth frame S:
 - **n** Production: height = h_0 at time $t = t_0$
 - **n Decay:** height = h_1 at time $t = t_1$
- Two events do not occur at same point:
 i.e. h₀ > h₁

n Calculate time between production and decay as seen from earth:

