1. $L=\frac{L_{0}}{\gamma}:$ So $\gamma=\frac{20 \mathrm{~m}}{10 \mathrm{~m}}$

$$
\underline{\gamma=2}
$$

$$
\gamma=\left(1-\frac{u^{2}}{c^{2}}\right)^{-1 / 2} \quad \rightarrow \quad 1-\frac{u^{2}}{c^{2}}=\frac{1}{4} \quad \rightarrow \quad \frac{u}{c}=\frac{\sqrt{3}}{2} \quad \underline{u}=2.6 \times 10^{8} \mathrm{~ms}^{-1}
$$

2. Length of changing room in Paul's frame (P) $\quad L^{\prime}=\frac{L}{\gamma}=\frac{10 \mathrm{~m}}{2} \quad \rightarrow \quad \underline{5 \mathrm{~m}}$.
3. \quad Space-time coord. in frame $(S) \quad F: \quad x_{F}=L(10 \mathrm{~m}) \quad, \quad t_{F}=L / u \quad(38.5 \mathrm{~ns})$

$$
\begin{equation*}
B: \quad x_{B}=0 \quad, \quad t_{B}=L / u \tag{38.5ns}
\end{equation*}
$$

4. Lorentz Transformations for space-time coordinates, x^{\prime}, t^{\prime} in (P) :

$$
\begin{array}{rlrl}
x_{F}^{\prime}=\gamma\left(x_{F}-u t_{F}\right)=\gamma(L-u L / u) & =0 & \text { as expected } \\
x_{B}^{\prime}=\gamma\left(x_{B}-u t_{B}\right)=\gamma(0-u L / u) & =-\gamma L & \text { as expected } \\
t_{F}^{\prime}=\gamma\left(t_{F}-u x_{F} / c^{2}\right)=\gamma\left(L / u-u L / c^{2}\right)=\frac{\gamma L}{u}\left(1-u^{2} / c^{2}\right)=\frac{L}{\mu u} \\
t_{B}^{\prime}=\gamma\left(t_{B}-u x_{B} / c^{2}\right)=\gamma(L / u-0)= & & =\frac{\gamma L}{u}
\end{array}
$$

5. Using $\gamma=2$ in expressions for t_{F}^{\prime} and $t_{B}^{\prime} \rightarrow t_{B}^{\prime}=4 t_{F}^{\prime}$

$$
\begin{array}{ll}
t_{F}=\frac{L}{u}=\frac{10 \mathrm{~m}}{2.6 \times 10^{8} \mathrm{~ms}^{-1}} & =38.5 \mathrm{~ns} \\
t_{B}=\frac{L}{u} & =38.5 \mathrm{~ns} \\
t_{F}^{\prime}=\frac{L}{\mu}=\frac{38.5 \mathrm{~ns}}{2} & =19.2 \mathrm{~ns} \\
t_{B}^{\prime}=\frac{\gamma}{u}=2 \times 38.5 \mathrm{~ns} & =77.0 \mathrm{~ns}
\end{array}
$$

6. So according to Paul, the Front (exit) door OPENS long before the Back (entrance) door CLOSES.
His chances are GOOD. He passes through the changing rooms unscathed.

Sports ground frame (S)

Paul's frame (P)

