Relativity Problem Sheet 3

3.1 Four-Vector Invariants

Prove that

1. $c^{2} t^{2}-x^{2}-y^{2}-z^{2}$ and
2. the scalar product of two four vectors

$$
a \cdot b \equiv c^{2} t_{a} t_{b}-x_{a} x_{b}-y_{a} y_{b}-z_{a} z_{b}
$$

are invariant under Lorentz transformations.

3.2 Using the Doppler Effect to Check Relativity

Consider an excited atom moving at speed βc in \mathcal{O} and emitting a photon along the $-x$ direction. In the atom's rest frame \mathcal{O}^{\prime} the photon has a frequency $f^{\prime}=f_{0}$ and its energy is $E_{\gamma}^{\prime}=p_{\gamma}^{\prime} c=h f_{0}$. Use the the inverse Lorentz Transform for the photon energy and show that its frequency in \mathcal{O} is

$$
f=f_{0} \sqrt{\frac{1-\beta}{1+\beta}}
$$

as expected from the Doppler effect.

3.3 Decay of the B^{0}

A B^{0} decays at rest into a π^{+}and a π^{-}. If $m_{\mathrm{B}^{0}}=5279 \mathrm{MeV} / c^{2}$, and $m_{\pi^{+}}=m_{\pi^{-}}=139 \mathrm{MeV} / c^{2}$ calculate the energy and the momentum of each π.

3.4 Linear Algebra

For the ones who like linear algebra: Write the Lorentz transformation as a 4×4 matrix acting on four-vectors.

