Relativity — Lecture 8

- Summary of Lecture 7
- Particle kinematics
- Four-Vectors introduction

06/12/2007

Imperial College London

100 years of living science

Patrick

Koppenburg

100

Imperial College London

Relativity — Lecture 8— 06/12/2007 – p.1/23

Lecture 7

Revision

Classical Momentum

The classical momentum conservation in an elastic collision says:

$$m_1 v_1^{\mathsf{in}} + m_2 v_2^{\mathsf{in}} = m_1 v_1^{\mathsf{out}} + m_2 v_2^{\mathsf{out}}.$$

But this is not covariant under LT. (Problem 2.3).

We need to redefine the momentum to preserve the law. We need

- 1. A definition of the momentum p such that it is conserved.
- 2. The low-speed limit must be p = mv.
- 3. The conservation laws must be covariant under LT.

Relativistic Momentum

Definition — Momentum:

$$\boldsymbol{p} = \frac{m\boldsymbol{v}}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$p_1' + p_2' = \underbrace{\gamma \left(p_1 + p_2 \right)}_{\text{constant}} - \underbrace{\gamma \frac{u}{c^2}}_{\text{constant}} \left(\frac{m_1 c^2}{\sqrt{1 - \frac{v_1^2}{c^2}}} + \frac{m_2 c^2}{\sqrt{1 - \frac{v_2^2}{c^2}}} \right).$$

Relativistic Momentum

Definition — **Momentum**:

$$\boldsymbol{p} = \frac{m\boldsymbol{v}}{\sqrt{1 - \frac{v^2}{c^2}}}$$

The momentum is conserved provided this is conserved:

$$\frac{m_1c^2}{\sqrt{1-\frac{v_1^2}{c^2}}} + \frac{m_2c^2}{\sqrt{1-\frac{v_2^2}{c^2}}}$$

Relativistic Energy

Definition — Energy:

$$E = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}}$$

Low speed approximation

Momentum:

$$p = \frac{mv}{\sqrt{1 - \frac{v^2}{c^2}}}$$

at $v \ll c$:

$$p \simeq mv$$

Imperial College London

Low speed approximation

Energy:

$$E = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}}$$

Rest energy:

$$E_0 = mc^2$$

Kinetic Energy:

$$K=rac{mc^2}{\sqrt{1-rac{v^2}{c^2}}}-mc^2$$
 0.5 $\simeq rac{1}{2}mv^2~(v\ll c)$

Imperial College London

Energy-Momentum Relations

For an object with momentum p:

$$E^2 = p^2 c^2 + m^2 c^4$$

For an object at rest:

$$E_0 = mc^2$$

High-speed limit

Energy:

$$E^2 = p^2 c^2 + m^2 c^4$$

at $v \simeq c$:

 \Rightarrow $E \simeq pc$

Imperial College London

Lecture 8

Electron Gun

Electrons accelerated to 1 MV

$$m_{\rm e} \sim 10^{-30} \, {\rm kg}$$

 $e = 1.6 \cdot 10^{-14} \, {\rm C}$

Binding Energy

London London

Kaon Decay

Particle Collisions

$$\begin{array}{rcl} \sum_i \boldsymbol{p}_i &=& \sum_o \boldsymbol{p}_o \\ \sum_i \boldsymbol{E}_i &=& \sum_o \boldsymbol{E}_o \end{array}$$
 with $E^2_{(i,o)} &=& p^2_{(i,o)}c^2 + m_{(i,o)}c^4$

Rotations and Lorentz Transforms

Clock on a Train

Clock on a Train

Introduction to Classwork

History of the Universe

Now (
$$t = 13.7 \cdot 10^9$$
 years) $T = 3 \text{ K}$

Stars form ($t = 10^9$ years) T = 15 K

Atoms form (t = 300,000 years)

Nuclei form ($t = 100 \,\mathrm{s}$) $T = 10^9 \,\mathrm{K}$

Protons and neutrons form, Antiquarks disappear (10^{-10} s)

Quarks form ($t = 10^{-34} \text{ s?}$)

$$T = 10^{28} \, \mathrm{K}$$

????

Big Bang (t=0)

Imperial College London

History of the Universe

At large temperatures the reaction below occurs:

$$\gamma + \gamma \leftrightarrow \text{particle} + \text{antiparticle}$$

For a particle of mass m, the photons must have energy $E_{\gamma} > mc^2$.

As long as $E=kT>2mc^2$ such pairs create and annihilate. Below this threshold the reaction stops.

Particle	Mass	T
W boson	$80 \mathrm{GeV}/c^2$	$10^{15} { m K}$
$\mathrm{d}\ quark$	$5 \mathrm{MeV}/c^2$	$10^{11}~\mathrm{K}$
electron	$511 \mathrm{keV}/c^2$	$10^{10}~\mathrm{K}$

Imperial College London

History of the Universe

In collider experiments we recreate the conditions of the primordial Universe according to the available energy.

Accelerator	Energy	T
LEP	$200~{\rm GeV}$	$10^{15}~\mathrm{K}$
Tevatron	$2\mathrm{TeV}$	$10^{16}~\mathrm{K}$
LHC	$14\mathrm{TeV}$	$10^{17}~\mathrm{K}$

Particle	Mass	T
W boson	$80 \mathrm{GeV}/c^2$	$10^{15} { m K}$
$\mathrm{d}\ quark$	$5 \mathrm{MeV}/c^2$	$10^{11}~\mathrm{K}$
electron	$511 \mathrm{keV}/c^2$	$10^{10}~\mathrm{K}$

Imperial College London

There's something wrong

 This bubble chamber picture shows a pair creation

$$\gamma + \gamma \rightarrow e^+ + e^-$$

- Particle and antiparticles are always created in pairs
- And they annihilate by pairs

$$e^+ + e^- \rightarrow \gamma + \gamma$$

• Hence:

Particles - Antiparticles = 0

There's something wrong

This bubble chamber picture shows a pair creation

$$\gamma + \gamma \rightarrow e^+ + e^-$$

Particle and antiparticles are always created in pairs

And they annihilate by pairs

$$e^+ + e^- \rightarrow \gamma + \gamma$$

Hence:

Particles - Antiparticles = 0

Where have all antiparticles gone?

Antimatter

Antimatter factory:

- 1. Replace electrons by positrons
- 2. Replace all quarks by antiquarks

Antimatter

Antimatter factory:

- 1. Replace electrons by positrons
- 2. Replace all quarks by antiquarks

CERN has an anti-atom production facility.

- Produced thousands of anti-hydrogen atoms
- Survive for milliseconds
- → Still allows to study them

Does antimatter have the same properties as matter?

Antimatter in the Universe

Imperial College Should be annihilation photons — can't see any.

Relativity — Lecture 8— 06/12/2007 – p.20/23

If there was a tiny difference

- If some mechanism slightly favoured matter of antimatter it could explain why there's any matter left and not just photons.
- Such a mechanism exists: CP violation

Imperial College London

If there was a tiny difference

You are here

- If some mechanism slightly favoured matter of antimatter it could explain why there's any matter left and not just photons.
- Such a mechanism exists: CP violation

CP violation exists

The strongest matter-antimatter asymmetry ever measured: Number of $b\to c\bar c s$ and $\bar b\to \bar c c\bar s$ decays versus time.

Imperial College's not enough: The asymmetry is a factor 10^{10} too small!

London

How to produce flying B mesons?

- 1. Collide and annihilate e⁻ & e⁺
- 2. If the energy is right it will produce a particle called $\Upsilon(4S)$
- 3. The $\Upsilon(4S)$ immediately decays to two B mesons
 - But the B mesons will hardly move before they decay
 - → Need to give them a kick
- 4. If the e^- and e^+ have different energies, the $\Upsilon(4{\rm S})$ will have momentum and the ${\rm B}$ mesons will fly

