Relativity — Lecture 10

- Summary of Lecture 9
- Big Summary
- The Twins Paradox

Imperial College

London
100 years of living science
Patrick
Koppenburg

Imperial College
London
P. Koppenburg

Relativitv - Lecture 10-13/12/2007 - p.1/24

Lecture 9

Revision

Rotations and Lorentz Transforms

Rotation in 2D:

$$
\begin{aligned}
x^{\prime} & =x \cos \alpha+y \sin \alpha \\
y^{\prime} & =y \cos \alpha-x \sin \alpha
\end{aligned}
$$

Invariants:
Rotation: $\quad r^{\prime 2}=x^{\prime 2}+y^{\prime 2}+z^{\prime 2}=x^{2}+y^{2}+z^{2}=r^{2}$

Rotations and Lorentz Transforms

Rotation in 2D:

$$
\begin{aligned}
x^{\prime} & =x \cos \alpha+y \sin \alpha \\
y^{\prime} & =y \cos \alpha-x \sin \alpha
\end{aligned}
$$

Lorentz Transform:

$$
\begin{aligned}
x^{\prime} & =\gamma(x-\beta c t) \\
c t^{\prime} & =\gamma(c t-\beta x)
\end{aligned}
$$

Invariants:
Rotation: $\quad r^{\prime 2}=x^{\prime 2}+y^{\prime 2}+z^{\prime 2}=x^{2}+y^{2}+z^{2}=r^{2}$
LT: $\quad\left(c t^{\prime}\right)^{2}-x^{\prime 2}-y^{\prime 2}-z^{\prime 2}=(c t)^{2}-x^{2}-y^{2}-z^{2}$
P. Koppenburg

Space-Time Four-Vector

Definition - Space-time four-vector:

$$
a \equiv(c t, x, y, z)=(c t, \boldsymbol{x})
$$

where \boldsymbol{x} is the spacial three-vector.

Modulus:

$$
a^{2} \equiv(c t)^{2}-x^{2}-y^{2}-z^{2}
$$

a^{2} is invariant under Lorentz transformations.

Clock on a Train

Assume $h=2$ metres high. $\ln \mathcal{O}^{\prime}$ the round-trip takes

$$
\begin{aligned}
s^{\prime} & =(4,0,0,0) \quad[\mathrm{m}] \\
\text { Imperial Cólege }_{s^{\prime 2}} & =4^{2}\left[\mathrm{~m}^{2}\right]
\end{aligned}
$$

London
P. Koppenburg

Clock on a Train

Assume $h=2$ metres high. In \mathcal{O}^{\prime} the round-trip takes

In \mathcal{O} frame the base moves by 3 metres. The trip is:

$$
s^{\prime}=(4,0,0,0) \quad[\mathrm{m}]
$$

Imperial College $s^{\prime 2}=4^{2} \quad\left[\mathrm{~m}^{2}\right]$
P. Koppenburg

Relativitv - Lecture 10-13/12/2007 - 0.5/24

Invariance

Imperial College
O

London
P. Koppenburg

Relativitv - Lecture 10— 13/12/2007 - D.6/24

Lecture 10

Imperial College
London
P. Koppenburg
Relativitv - Lecture 10- 13/12/2007 - p.7/24

Spacetime Geometry

If $a^{2}>0, \quad a$ is called timelike, If $a^{2}<0, \quad a$ is called spacelike, If $a^{2}=0, \quad a$ is called lightlike.

Spacetime Geometry

If $a^{2}>0, \quad a$ is called timelike, If $a^{2}<0, \quad a$ is called spacelike, If $a^{2}=0, \quad a$ is called lightlike.

Time travel is not possible

CERN Antiproton Factory

ANGELS an DEMONS

Lecture Summary

What is Relativity?

Definition - Relativity:

Relativity is a theory describing the relation between observations (measurements) of the same process by different observers in motion relative to each other.

Special Relativity refers to the special case of inertial observers.
General Relativity refers to the general case of accelerated observers and provides a theory of gravity.

Postulates of Special Relativity

1. The laws of physics are identical in all inertial frames.
2. Light is propagated in empty space with a definite velocity c that is independent of the state of motion of the emitting body.
\rightarrow The speed of light in vacuum has the same value c for all inertial observers.

$$
c=299,792,458 \text { (exact) } \simeq 3 \cdot 10^{8} \mathrm{~m} / \mathrm{s} .
$$

Lorentz Transformations

$$
\begin{aligned}
x^{\prime} & =\gamma(x-u t) \\
y^{\prime} & =y \\
z^{\prime} & =z \\
t^{\prime} & =\gamma\left(t-\frac{u x}{c^{2}}\right)
\end{aligned}
$$

assuming \mathcal{O}^{\prime} moves at speed u along x relative to \mathcal{O}.

Quote

Make things as simple as possible, but no simpler.

A Good Observer

Consequences of Relativity

Length contraction:

The measured length of a body is greater in its rest frame than any other frame.

Time dilation:
The measured time difference between the events represented by two readings of a given clock is less in the rest frame of the clock than in any other frame.

A body appears to be contracted, and time appears dilated, when seen from another frame.

Relative motion

$$
-\frac{c}{2} \leftarrow-{ }^{A}
$$

$$
v_{x}^{\prime}=\frac{v_{x}-u}{1-\frac{u v_{x}}{c^{2}}}, \quad v_{y}^{\prime}=\frac{v_{y}}{\gamma\left(1-\frac{u v_{x}}{c^{2}}\right)}, \quad v_{z}^{\prime}=\frac{v_{z}}{\gamma\left(1-\frac{u v_{x}}{c^{2}}\right)}
$$

The non-relativistic $(u \ll c)$ limit is:

$$
v_{x}^{\prime}=v_{x}-u, \quad v_{y}^{\prime}=v_{y}, \quad v_{z}^{\prime}=v_{z} .
$$

Relativistic Doppler Effect

Energy and momentum

Definition — Momentum:

Definition - Energy:

$$
p=\frac{m v}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

$$
E=\frac{m c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

Particle with Momentum $p: E^{2}=p^{2} c^{2}+m^{2} c^{4}$
Particle with Momentum $p=0: E_{0}=m c^{2}$

$$
\beta=\frac{p c}{E}, \quad \gamma=\frac{E}{m c^{2}} .
$$

Lorentz Transforms

Lorentz Transformations

$$
\begin{aligned}
& (x, c t) \\
x^{\prime}= & \gamma(x-\beta c t) \\
y^{\prime}= & y \\
z^{\prime}= & z \\
c t^{\prime}= & \gamma(c t-\beta x)
\end{aligned}
$$

Lorentz Transformations

$$
(p, E)
$$

$$
p_{x}^{\prime}=\gamma\left(p_{x}-\beta \frac{E}{c}\right)
$$

$$
p_{y}^{\prime}=p_{y}
$$

$$
p_{z}^{\prime}=p_{z}
$$

$$
\frac{E^{\prime}}{c}=\gamma\left(\frac{E}{c}-\beta p_{x}\right)
$$

p transforms like x and E / c like $c t$.

Space-Time Four-Vector

Definition - Space-time four-vector:

$$
a \equiv(c t, x, y, z)=(c t, x)
$$

where x is the spacial three-vector.

Modulus:

$$
a^{2} \equiv(c t)^{2}-x^{2}-y^{2}-z^{2}
$$

a^{2} is invariant under Lorentz transformations.

Energy-Momentum Four-Vector

Definition - Energy-momentum four-vector:

$$
P \equiv\left(\frac{E}{c}, p_{x}, p_{y}, p_{z}\right)=\left(\frac{E}{c}, \boldsymbol{p}\right) .
$$

The scalar product of two fourmomentum vectors is invariant:

$$
P_{1} \cdot P_{2} \equiv \frac{E_{1} E_{2}}{c^{2}}-\boldsymbol{p}_{1} \cdot \boldsymbol{p}_{2} .
$$

Classwork

Twins paradox

- We have two twins, Al and Bob
- Bob embarks on a space-trip to Alpha Centauri at large speed. AI stays on Earth
- 10 years later Bob comes back and because of time contraction he is now younger than Al .

Twins paradox

- We have two twins, Al and Bob
- Bob embarks on a space-trip to Alpha Centauri at large speed. Al stays on Earth
- 10 years later Bob comes back and because of time contraction he is now younger than Al .
- But in Bob's frame he was at rest and Al was moving at large speeds. So Al must be younger
- Who's right?

Twins paradox

- We have two twins, Al and Bob
- Bob embarks on a space-trip to Alpha Centauri at large speed. AI stays on Earth
- 10 years later Bob comes back and because of time contraction he is now younger than Al .
- But in Bob's frame he was at rest and Al was moving at large speeds. So Al must be younger
- Who's right?
- The right question to ask: How many inertial reference frames are there in the problem?

