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4 Relativistic Mechanics

We have discussed velocities will now define relativistic momentum and energy. The most

important applications of relativistic mechanics is in high-energy particle interactions, for

instance collisions or decays. We shall mainly focus on those.

But first let’s start with our light clock.

4.1 Energy of the Light Clock

Suppose we have a light clock at rest and free to float. What would happen when we

switch it on and the first pulse is emitted?

We know the energy of photons from Planck’s law

E = hν

and the momentum from de Broglie5

p =
h

λ
with c = νλ ⇒ p =

hν

c
=

E

c
. (21)
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Figure 21: Momentum conservation

in a light clock.

A light clock of mass M and length L emits

a first pulse of energy E and momentum E/c.
By momentum conservation the clock recoils

at a speed

v = − p

M
= − E

Mc
,

where we assume v � c. After travelling for a

time ∆t ' L/c the radiation hits the other end

of the clock which brings it back to rest again

(Fig. 21). In the process the box has moved by

∆x = v∆t = − EL

Mc2
,

where we used v � c again. Does this mean the centre of mass of the clock has moved?

This cannot be. As no external force acts on the clock the centre of mass cannot have

moved. To keep the centre of mass in place we need to postulate that the burst of light has

transferred some mass m from the left to the right part of the clock such that

mL + M∆x = 0.

This postulated mass can then be calculated as

m = −M

L
∆x =

M

L

EL

Mc2
=

E

c2
,

or

E = mc2, (22)

which you might have seen before.

What does that mean? It is not the mass of the light burst. Light has no mass. It is the

amount of mass which has been lost by the left side of the clock and absorbed by the right

side in the process.

5We know this but Einstein didn’t in 1905 as de Broglie’s law dates from 1924 (and Planck’s from 1900).

He reached the same conclusion in a very different way in [15].
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Einstein postulated in his second relativity article [15] that any change of energy in

the reference frame of a body is associated to a change of mass. The left side of the clock

becomes lighter by a mass E/c2 and the right side heavier. Mass is not conserved in a

process involving a change of energy.

It looks as if we haven’t used any of the postulates of special relativity here and that

Newton’s laws could have predicted the same result. This is not really true as we have

implicitly used that light is emitted as speed c and that it propagates at speed c.6

This result postulates the equivalence of mass and energy. Mass is just a form of energy

at rest. Note that it is a very dense form of energy: c2 is a huge factor. The energy produced

by a 1 GW power plant in a year is equivalent to 350 g of mass.

Let’s now define more precisely the relativistic momentum and energy.

4.2 Energy and Momentum Conservation
L.7

In special relativity energy and momentum conservation is actually more useful than the

relativistic form of Newton’s second law.

The classical momentum conservation in an elastic collision says:

m1v
in
1

+ m2v
in
2

= m1v
out
1

+ m2v
out
2

.

But this is not covariant under LT. (Problem 2.3).

We need to redefine the momentum to preserve the law. We need

1. A definition of the momentum p such that it is conserved.

2. The low-speed limit must be p = mv.

3. The conservation laws must be covariant under LT.

We the postulate

Definition — Momentum:

p =
mv

√

1 − v2

c2

= γmv (23)

Does this definition address the constraints listed above?

1. The conservation has to be tested experimentally.

2. The low-speed limit is p = mv if v � c.

3. If p1 + p2 = constant, is p′

1
+ p′

2
= constant′ when pi and p′

i
are related by a LT?

Let’s simplify by having a momentum along x, i.e. p = (p, 0, 0). Using Eq. (23) we have

p′ =
mv′

√

1 − v′2

c2

with v′
(14)
=

v − u

1 − uv
c2

=
mv − mu

1 − uv
c2

1
√

1 − (v−u)2

c2
“

1−uv

c
2

”2

= γp − γ
u

c2

mc2

√

1 − v2

c2

,

6Although Newton himself wrote Are not gross bodies and light convertible into one another [...]? in 1730.
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after some algebra. Thus with p = p1 + p2 we get

p′1 + p′2 = γ (p1 + p2)
︸ ︷︷ ︸

constant

− γ
u

c2
︸︷︷︸

constant




m1c

2

√

1 − v2

1

c2

+
m2c

2

√

1 − v2

2

c2



 .

The momentum is conserved provided the quantity

m1c
2

√

1 − v2

1

c2

+
m2c

2

√

1 − v2

2

c2

is also conserved.

This is not different from Galilean relativity (Eq. (10)) where momentum is conserved

provided that mass is conserved. Here we have no requirement on mass (we know it’s

related to energy) but on the quantity above. We shall define as the energy:

Definition — Energy:

E =
mc2

√

1 − v2

c2

= γmc2 (24)

So momentum conservation applies in all inertial frames, if energy is conserved. Here

again there is no mathematical proof that this quantity is indeed conserved. It’s an exper-

imental fact.

4.3 Energy-Momentum Relations

In Newtonian mechanics we relate the kinetic energy K to the momentum by

K =
p2

2m
.

How is this relation in relativistic mechanics? Using Eq. (23) and (24) we get

p

E
=

mv

mc2
=

v

c2
⇒ v =

p

E
c2, (25)

and

E2 =
m2c4

1 − v2

c2

=
m2c4

1 − p2

E2 c2
=

E2m2c4

E2 − p2c2
⇒ E2 − p2c2 = m2c4

or

E2 = p2c2 + m2c4, (26)

which is the relativistic energy-momentum relation.
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4.3.1 Rest Energy

An object at rest has p = 0 and therefore

E0 = mc2. (27)

A particle at rest has an energy equal to its mass (times some constant). The mass at rest

(“rest mass” or “proper mass”) is a property of the particle.

4.3.2 Kinetic Energy

If E0 = mc2 is the rest energy one can define the kinetic energy as

K = E − E0 =
mc2

√

1 − v2

c2

− mc2 = mc2 (γ − 1) (28)

4.3.3 Non-relativistic approximation

At low speeds v � c we get the momentum

p =
mv

√

1 − v2

c2

⇒ p ' mv

and the kinetic energy

K = mc2




1

√

1 − v2

c2

− 1



 = mc2

(

1 +
1

2

v2

c2
+ · · · − 1

)

' 1

2
mv2,

and recover Newton’s quantities.

4.3.4 Ultra-relativistic approximation

At very high speeds v ' c (but smaller!) the rest energy of the particle is negligible

compared to the total energy. We then have

E2 = p2c2 + m2c4 ' p2c2 ⇒ E ' pc.

This is a very good approximation for the muon in Section 3.6.1.

4.3.5 About Photons

Where does the photon fit into all this? We know from Planck and de Broglie that E = pc
(Eq. (21)). But we also know E2 = p2c2 + m2c4, so the photon must have no mass. Using

Eq. (25):

v =
p

E
c2 = c

Photons travel at speed of light at any energy. What differs is their frequency, i.e. their

colour.
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4.3.6 High-Energy Electrons

In an X-ray gun electrons are accelerated by an electric potential of U ∼ 106 V. What’s the

electron’s speed?

Newton would have said

K = eU =
1

2
mv2

with me ∼ 10−30 kg and e = 1.6 · 10−14 C,

v2 =
2eU

me
' 2 · 1.6 · 10−14 · 106

10−30
= 32 · 1016 m2

s2
⇒ v ' 6 · 108 m

s
' 2c,

clearly an invalid use of Newtonian mechanics. We have comparable kinetic energy K =
16 · 10−14 J and rest mass energy mec

2 = 9 · 10−14 J.

The correct way is to use Eq. (25)

v =
p

E
c2 with E = K + mec

2 = 25 · 1014 J

and the momentum is obtained from Eq. (26)

p2c2 = E2 − m2
ec

4 ⇒ pc

E
=

√

1 −
(

mec2

E

)2

=
v

c

and therefore

v = c

√

1 −
(

9

25

)2

' 0.9c.

It takes a million volts to accelerate an electron to 90% of the speed of light.

4.4 Some Useful Relations

We now have some useful relations between E, p, β and γ:

For a particle of mass m, momentum p and total energy E

β =
pc

E
, γ =

E

mc2
. (29)

5 Applications

5.1 Units

Charged particles attain high energies via electric fields, as in the example above. For fun-

damental particles of charge ±e, the best is to measure the energy in units of fundamental

charge times electric potential difference.

The kinetic energy of a particle of charge e accelerated by 1V is 1 eV = 1.6 · 10−19J.

The use of multiples of eV is more practical for atomic or sub-atomic physics than Joules

(see Problem 2.4).

Energies are measured in eV (typical energies of atoms in gas at room temperature),

keV (kinetic energy of electrons in an old-style TV set), MeV (as the electron above), GeV
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(at big accelerators), and even TeV (= 1012 eV ' 10−7 J, at the biggest accelerators like

the Large Hadron Collider at CERN).

Masses are then measured in units of eV/c2. For instance

1 GeV/c2 = 109 1V · e
c2

= 109 1.6 · 10−19

9 · 1016
' 2 · 10−27 kg

is about the mass of the proton. The electron “weights” 511 keV/c2.

Similarly one measures momenta in eV/c.
Since the factors c and e are absorbed into the units, one can write Eq. (26) as

E2 = p2 + m2

when using these units. This avoids clutter of c’s and e’s in equations, like in our electron

speed calculation above.

5.1.1 High-Energy Electrons Revisited

Using these relations we solve the problem in Section 4.3.6 in one line

β =
p

E
=

√
E2 − m2

E
=

√

1 −
(

1
2

)2

1
' 0.9.

5.2 Nuclear Physics
L.8

A nucleus is a bound state of nucleons (p,n). Where bound means that

ENucleus < Efree constituents

else it would be advantageous to be free and the nucleus would fall apart. Since rest

energy is related to mass, we have

mNucleus <
∑

mconstituents.

Example: The simplest nucleus is the deuterium D = 2
1H = (p,n). The masses are [14]:

mp = 938.272 MeV/c2

mn = 939.565 MeV/c2

mD = 1875.613 MeV/c2

The difference in energies (mD − mp − mn)c
2 = 2.22 MeV is the binding energy of the

deuteron nucleus. This means the fusion of a proton and a neutron would free about

2 MeV of energy in form of high-energy photons. However, free neutrons are not available

in nature as they decay.

But fusion of deuterium works. In the sun the fusion

D + D ⇒ 3
2He + n + 3 MeV

happens all the time and is providing the fuel for life on earth.

Fusion is possible when the binding energy per nucleon increases with the number

of nucleons in the nucleus. Fission is possible when this energy decreases. The binding

energy is shown for all nuclei in Figure 22. At the top of the curve is iron 56Fe, which is

the most bound nucleus. Nuclear fusion in stars stops at iron, that’s why there is so much

iron around as compared to similar atoms. The earth core is mainly made of iron.
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Figure 22: Binding energy of various nuclei.

5.3 Particle Collisions

Momentum and energy conservation in collisions and decays is written
∑

i

pi =
∑

o

po

∑

i

Ei =
∑

o

Eo

with E2
(i,o) = p2

(i,o)c
2 + m(i,o)c

4







(30)
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Oi

ON

Figure 23: Collision, decay. . .

where i stands for incoming and o for outgoing. In an

elastic collision the same particles appear on both sides

of the equations, in a decay there is only one incoming

particle, the general case being the inelastic collision

where there can be any number of particles on each

side. The values of p and E differ for observers in dif-

ferent inertial frames, but the relations above remain

valid in any inertial frame. This is the covariance of en-

ergy and momentum relations.

A few examples are given below.

5.3.1 Particle Decay at Rest

Take the decay of the neutral kaon to two pions K0 → π+π− in its rest frame.

Momentum conservation: 0 = p1 + p2

p1 = p2 (= pπ, say)

Energy conservation: EK0 = mK0c2 = E1 + E2
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Figure 24: Decays of a K0 (left) and a K+ (right), Manchester, December 20, 1947 [16].

where

E2
(1,2) = p2

πc2 + m2
πc4 ⇒ E1 = E2 (= Eπ, say).

Experiment gives

mK0 = 498 MeV/c2 ⇒ Eπ =
1

2
mK0c2 = 249 MeV

mπ = 139 MeV/c2

and

p2
πc2 = E2

π − m2
πc4 = 2492 − 1392 ⇒ pπ = 206 MeV/c.

The two pions fly away with momenta of 206 MeV/c and speeds of β = 206
248 ' 0.7.

This process is purely relativistic. Newton’s laws do not allow mass to be converted

into kinetic energy.

5.3.2 Particle Decay in Flight

In the real world a K0 is almost never at rest. It is flying with a momentum pK0 in the

laboratory frame O, as in Figure 24. But we know the analysis is simple in the K0 frame

O′: p′
1 = p′

2 = 206 MeV/c2. So we simply need to Lorentz-transform this result into the

laboratory frame.

To do this we need Lorentz transformations for momenta.

5.3.3 Lorentz Transformations for Momentum and Energy

p =
mv

√

1 − v2

c2

We want to transform p to p′ using the velocity transformations v to v ′ given in Eq. (14):

p′x = γpx − γu

c2

mc2

√

1 − v2

c2

= γ

(

px − uE

c2

)
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a similar analysis leads to the transformations:

p′x = γ
(
px − uE

c2

)

p′y = py

p′z = pz

E′ = γ (E − upx)







(31)

where γ involves the velocity u of the frame O ′ relative to O.

We then get the Lorentz transformations:

Lorentz Transformations (x, ct)

x′ = γ (x − βct)
y′ = y
z′ = z
ct′ = γ (ct − βx)







(32)

Lorentz Transformations (p, E)

p′x = γ
(
px − β E

c

)

p′y = py

p′z = pz
E′

c
= γ

(
E
c
− βpx

)







(33)

p transforms like x and E/c like ct.

Inverse transformations also take the usual form.

5.3.4 Particle Decay in Flight

Back to our K0. Consider a decay along the x-axis, the axis of motion of the K0. From

Section 5.3.1 we have

(p′1)x = 206 MeV/c
E′

1 = 249 MeV/c
(p′2)x = −206 MeV/c

E′

2 = 249 MeV/c

Let’s transform this to the laboratory frame O using inverse LT:

(p1)x = γ

[

(p′1)x + β
E′

1

c

]

with β = u/c and u is the speed of O′ relative to O, i.e. the speed of the K0 relative to the

laboratory, which following Eq. (25) is

u =
pK0

EK0

c2.

For example a K0 with pK0 = 500 MeV/c in the laboratory has

EK0 =
√

p2
K0c2 + mK0c4 ' 700 MeV

β =
pK0c

EK0

' 5

7
γ =

EK0

mK0c2
' 7

5

(p1)x =
7

5

[

+206 +
5

7
249

]

' 539 MeV/c

(p2)x =
7

5

[

−206 +
5

7
249

]

' −39 MeV/c,

and we have one pion going forward at a large speed (β = 0.98) and the other one

backward with a low speed (β = 0.27).


