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Figure 25: Rotation in 2D.

x

t

x′

t′

� P

Figure 26: Lorentz-transform.

6 Four-Vectors
L.9

Lorentz transformations teach us that there is no absolute space and no absolute time.

Time and space mix depending on the speed of the observer. Each observer knows what

his space and his time is and doesn’t feel like they mix, but when talking to another

observer in another frame of reference, one has to apply Lorentz transforms, in particular

x′ = γ (x − βct) ct′ = γ (ct − βx) . (34)

x′ is an admixture of x and t and t′ an admixture of t and x.

That’s similar to rotations in two dimensions. If you speak about the position of a point

P with an observer whose reference frame is rotated by an angle α with respect to yours

you will have to apply the transformation

x′ = x cos α + y sinα y′ = y cos α − x sinα, (35)

as in Figure 25. x′ is an admixture of x and y.

Is a Lorentz transform just a rotation is space-time? Not really, the key problem being

the presence of the two minus signs in the Lorentz transform while there is a minus and a

plus in the rotation. See Figure 26 for a graphical representation.

But there are similarities. In two dimensions there is one obvious quantity which is

conserved by rotations: the distance r:

r′2 = x′2 + y′2 = x2 + y2 = r2,

which you can easily prove using Eq. (35). r is an invariant of 2D-rotations and can easily

be generalised to 3D-rotations

r′2 = x′2 + y′2 + z′2 = x2 + y2 + z2 = r2. (36)

Is there an equivalent for Lorentz Transforms? Yes, it is

c2t′2 − x′2 − y′2 − z′2 = c2t2 − x2 − y2 − z2 (37)

Note the minus signs! The proof is in Problem 3.1.

Given this invariant it is quite natural to extend three-dimensional vectors to four-

vectors including time. They are usually written as
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Definition — Space-time four-vector:

a ≡ (ct, x, y, z) = (ct,x)

where x is the spacial three-vector.

Some authors write them with the space component first and the time last. They can

also be written in columns. Finally some write the first term as −ct. It’s just a matter

of conventions and does not matter as long as one gets Eq. (38) and (40) below right.

There is also no standard notation for four-vectors unlike three-vectors which are shown

in bold-type. In these notes we shall always call a space-time four-vector a or b.
Unlike for three-vectors we shall define the squared modulus as follows:

Definition — Squared Modulus of a four-vector:

a2 ≡ ct2 − x2 − y2 − z2 (38)

a2 is invariant under Lorentz transformations as shown in Eq. (37).

So for any four-vector a and any Lorentz transformation LT :

a2 = [LT (a)]2 . (39)

Students who like linear algebra might try to write LT as a 4× 4 symmetric square matrix

(Problem 3.4). But we won’t need this.

6.1 Example

For example go back to Figures 11 and 12 on p. 11. Consider the two events

• Emission of a ray of light from the base of the clock, (which we set to be the origin

O)

• Reception of this ray back on the base.

In the first case (Fig. 11) we have the light clock at rest in the train. If we suppose the

clock is h = 2 metres high, the light will take a time ct′ = 4 m for the round trip. The

four-vector is then

s′ = (4, 0, 0, 0) [m].

In the frame of the earth the clock is moving with the train. Suppose the base has moved

by 3 m during the time the light travels in the clock. At the end of the round trip the base

will be at x = 3 m. And the time taken is given by Pythagoras: (ct)2 = x2 + (2h)2 = 52.

The four-vector in the earth frame is

s = (5, 3, 0, 0) [m].

And we have

s2 = 52 − 32 = 42 = s′
2

[m2].
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Figure 27: Graphical representation

of the invariance.

Figure 27 shows a 2D projection of four di-

mensional space-time where the two space-time

vectors are shown. The round-trip trajectory

of the ray of light in the frame of the train is

OA ≡ s′, with x = 0 staying constant. In the

frame of the earth the light ray goes forward in

x and takes longer in t: this is the OB ≡ s vec-

tor. Both are on a hyperbola at constant a2. The

dashed diagonals show trajectories at speed of

light (so their slope is dx/dt = c). They are the

limit for train speeds close to the speed of light.

The fact that the curve is a hyperbola is a con-

sequence of the minus sign in the modulus of four-vectors. In the case of the 3D distance

invariance r2 we would draw a circle.

6.2 Space-Time Geometry

Unlike x2 which is always positive, a2 can take negative values. We can classify four-

vectors according to the sign of a2:

If a2 > 0, a is called timelike,

If a2 < 0, a is called spacelike,

If a2 = 0, a is called lightlike.

Note that
√

a2 has only a physical meaning for timelike vectors. It’s the time measured by

an observer moving along the four-vector.

6.2.1 Timelike
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Figure 28: Space-time geometry.

Lets extend Fig. 27 to the past. Suppose an

event occurs at the origin O at x = 0, t = 0. An-

other event occurs at point P at x = 0, t < 0. It

is in the past at the same place as O and hence

can have some effect on O. Event Q also oc-

curred in the past, but at a different place. An

object from Q could still reach O while travel-

ling at speed below c. The event Q could be the

Circle line starting from Knightsbridge, P be you

arriving on the South Kensington platform and

O you boarding the Circle line.

Everything in zone ➀ below the dashed lines

is in O’s past domain of influence. These are

events that can affect O. Everything in zone ➁

above the dashed lines in the future is in O’s

future domain of influence. These are events

that could be influenced by O. R could be you leaving the Circle line at Paddington. All
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points in these two domains have ct2 < x2 and are thus timelike. It’s the part of the

universe that affects O now or that O is affecting.

6.2.2 Spacelike

Event S is also in the past but too far away to affect O. Information about event S cannot

not have reached O. It might reach the line x = 0 in the future but not at time t = 0. For

instance if Sirius exploded yesterday we wouldn’t know it before 8 years. Events in these

regions (zone ➂) have ct2 > x2 and are spacelike. The same applies to T although it’s in

the future. S and T are not really different as one can always find a reference frame for

which S is after O and T , for instance.

This is not possible for Q and O. Q will always be seen as before O by any observer.

Else causality would be meaningless.

6.2.3 Lightlike

The dashed lines are O’s light-cone. It’s a three-dimensional surface of all events which

you can see while boarding the Circle line (if in the past), or which can see O in the future.

Four-vectors on these lines have ct2 = x2 and are lightlike.

Point U for instance could be the emission of a photon from the sun arriving at South

Kensington at O.

6.2.4 Time Travel

x

t

Figure 29: A “worldline”: a trajectory

of a particle through space-time.

While four-vectors can be spacelike, the four-

vector between two positions of the same parti-

cle cannot be. Along the trajectory of a particle

in four-dimensional space-time (called “world-

line”) starting from the origin, the squared

squared modulus a2 of its position four-vector

is always positive and always increasing along

the worldline at speeds u < c.
In the own proper frame time is increasing.

There’s no turning back. The particle in Fig 29

crosses x = 0 three times, but never goes back in

time and never exceeds speed of light. Although

there is a minus sign in Eq. (38) the speed limit

c will prevent us reducing a2. The distance r
(Eq. (36)) can become 0 and one can come back

to the initial point. But not from a trip in space-

time. Time travel is excluded by special relativity.

6.3 Scalar Product

For three-vectors the squared modulus is nothing but a special case of the scalar (“dot”)

product.

x1 · x2 = x1x2 + y1y2 + z1z2 = |x1| |x2| cos θ

for any two vectors x1 and x2, where θ is the angle of the two vectors. This quantity is

obviously conserved under rotations as the latter does not affect moduli nor angles.

Similarly for four-vectors we have:
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Definition — Scalar product of two four-vectors:

a · b ≡ c2tatb − xaxb − yayb − zazb = c2tatb − x1 · x2. (40)

The scalar product is also invariant under Lorentz transformations.

The proof is in Problem 3.1.

6.4 Four-Momentum

Equations (32) and (33) show that p transforms like x and E/c like t. All we have said for

a = (ct,x) is also valid for P = (E/c,p).

Definition — Energy-momentum four-vector:

P ≡
(

E

c
, px, py, pz

)

=

(
E

c
,p

)

. (41)

The full name energy-momentum four-vector is often shortened four-momentum in physi-

cists’ jargon. That’s what it is called on wikipedia. Taylor and Wheeler [4] invent the

neologism momenergy, which it is hardly ever used elsewhere.

We now have a new Lorentz-invariant, the scalar product of two four-momentum vec-

tors

P1 · P2 ≡ E1E2

c2
− p1 · p2. (42)

which will prove very useful for problem-solving. If we take P = P1 = P2 we get the

squared modulus of a four-momentum

P 2 =
E2

c2
− p2 = m2c2, (43)

which is as invariant as it gets.

6.4.1 Creation of anti-protons

Anti-protons p are created in collisions of accelerated protons with a target in the reaction

p + p → p + p + p + p

where the first proton is the incoming one and the second a proton of the target. They

both also come out, but transfer some energy for the creation of a p + p pair. What is the

minimal energy for this reaction to happen?

The first two protons have four-momenta in the laboratory frame O

P1 =

(
E

c
, |p|, 0, 0

)

and P2 =

(
mc2

c
, 0, 0, 0

)

.
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The incoming 4-momentum is the sum

Pin = P1 + P2 =

(
E + mc2

c
, |p|, 0, 0

)

.

This is equal to the outgoing 4-momentum Pout, but the latter is difficult to relate to

anything useful about the four outgoing particles.

It is much easier in the centre-of-mass frame O ′. At the threshold, i.e. when the energy

is just enough to produce the additional pair, the pack of three protons and the anti-proton

is at rest in O′. The total momentum in this frame is 0 and the energy 4mc2

P ′

out =

(
4mc2

c
, 0, 0, 0

)

.

The prime reminds us that we are in a different frame. Using Eq. (43) we can write

P 2
in = P ′2

out
(

E + mc2

c

)2

− p2 = (4mc)2

E2

c2
+ 2Em + m2c2 − E

c2
+ m2c2 = 16m2c2 (using Eq. 26)

2Em = 14m2c2

E = 7mc2.

One needs to accelerate a proton to a kinetic energy of six proton masses to produce one

anti-proton.

You can redo the calculation in the case both incoming protons are colliding head-on

at the same energy and would find you need only K = mc2 for each proton. In the fixed

target case the energy of four proton masses is wasted in useless momentum in the fixed

target experiment. This is why modern particle physics experiments all run using colliders.
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