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Quantum Physics Answer Sheet 3

Working with Wavefunctions

1. (i) The probability density f(x, t) is proportional to |ψ(x, t)|2. Hence, the probability
f(x, t)dx that the particle is found between x and x+ dx at time t is proportional to

|ψ(x, t)|2 dx =

{
cos2(πx/d)e−i(h̄π

2/2md2)tei(h̄π
2/2md2)t dx |x| < d/2

0 otherwise

=

{
cos2(πx/d) dx |x| < d/2
0 otherwise

which is independent of time. The particle is most likely to be found at x = 0, where
f(x) is largest.

(ii) In order to normalise ψ(x, t) we have to evaluate

N =
∫ ∞

−∞
|ψ(x, t)|2 dx =

∫ d/2

−d/2
cos2(πx/d) dx =

d

2
.

(The integration is easy because cos2 θ repeats every π radians and averages to 1/2
over any whole number of repeats.)

Hence, the normalised ground-state wavefunction is:

ψ(x, t) =





√
2

d
cos(πx/d)e−i(h̄π

2/2md2)t |x| < d/2 ,

0 otherwise .

(iii) 〈x〉 =
∫ d/2

−d/2
x

2

d
cos2

(
πx

d

)
dx = 0 (integrand is odd).

〈x2〉 =
∫ d/2

−d/2
x2 2

d
cos2

(
πx

d

)
dx

=
d3

π3

2

d

∫ π/2

−π/2
θ2 cos2 θ dθ (where θ = πx/d)

=
(

1

12
− 1

2π2

)
d2 (using integral given in question).

Hence

∆x =
√
〈(x− 〈x〉)2〉 =

√
〈x2〉 = d

√
1

12
− 1

2π2
≈ 0.181 d .
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2. (i) The electron probability density f(r, t) is the square modulus of the normalised wave-
function and is proportional to the square modulus of the unnormalised wavefunction.
Hence

f(r, t) ∝
(
e−r/a0e−iE0t/h̄

) (
e−r/a0e−iE0t/h̄

)∗
= e−2r/a0 ,

which is independent of time. The probability density is largest at r = 0 (when the
electron is right on top of the nucleus).

(ii) The normalisation condition in three dimensions is

∫

all space
|ψ(r, t)|2dV = 1 .

To verify that the wavefunction given in the question is normalised, we have to show
that the normalisation integral,

N =
∫

all space

1

πa3
0

e−2r/a0 dV ,

is equal to 1. Since the integrand only depends on the length r of the vector r,
the integral can be evaluated by summing contributions from spherical shells. The
contribution from the shell with inner and outer radii r and r + dr is the volume of
that shell, 4πr2dr, times the value of the integrand for that shell. Hence

N =
∫ ∞

r=0

1

πa3
0

e−2r/a04πr2 dr

=
4π

πa3
0

(
a0

2

)3 ∫ ∞

ξ=0
e−ξξ2 dξ (where ξ = 2r/a0)

=
1

2
2! = 1 (using integral given in question)

as required.

(iii) Let p(r)dr be the probability that the electron is found in the spherical shell with
inner and outer radii r and r + dr. Then

p(r) dr = |ψ(r, t)|2 4πr2dr =
1

πa3
0

e−2r/a04πr2dr =
4

a3
0

r2e−2r/a0 dr .

The most probable distance of the electron from the nucleus is the value of r for
which p(r) is maximised. To find the maximum of p(r), we set dp/dr equal to zero:

dp

dr
=

4

a3
0

(
2r − 2

a0

r2
)
e−2r/a0 = 0 .

The only solution to this equation is r = r2/a0 and hence r = a0. The most probable
distance of the electron from the nucleus is therefore a0. (Since p(r) is a non-negative
function which is zero at r = 0, tends to zero as r → ∞, and has only a single
stationary point in between, there is no need to check the type of that stationary
point. It can only be a maximum. Why?)
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In part (i) we found that the probability density is maximised at the origin. Here
we found that the most likely distance of the electron from the origin is a0. These
results are not inconsistent. The probability density f(r) is defined as follows:

prob. electron is found in volume element dV at r = f(r) dV .

In other words, f(r) is the probability per unit volume. The probability of finding the
electron in the spherical shell with inner and outer radii r and r + dr is the product
of the probability density, f(r), and the volume 4πr2dr. Although the probability
density peaks at the origin and decreases as r increases, the volume of a shell of fixed
thickness dr increases with r. In fact, for r < a0, the shell volume increases faster
than the probability density decreases. The probability of finding the electron within
a spherical shell of thickness dr therefore increases as r increases from 0 to a0.

(iv) The mean distance from the nucleus is

〈r〉 =
∫

all space
r |ψ(r, t)|2 dV =

∫ ∞

r=0
r
e−2r/a0

πa3
0

4πr2dr

=
4

a3
0

(
a0

2

)4 ∫ ∞

0
ξ3e−ξ dξ (where ξ = 2r/a0)

=
a0

4
3! (using integral given in question)

=
3a0

2
.

The mean square distance from the nucleus is

〈r2〉 =
∫

all space
r2 |ψ(r, t)|2 dV =

∫ ∞

r=0
r2 e

−2r/a0

πa3
0

4πr2dr

=
4

a3
0

(
a0

2

)5 ∫ ∞

0
ξ4e−ξ dξ (where ξ = 2r/a0)

=
a2

0

8
4! (using integral given in question)

= 3a2
0 .

Hence, the root mean square distance (the square root of the mean square distance)
of the electron from the nucleus is

√
3 a0.

(v) The probability of finding the electron within a sphere of radius 10−15 m is given
exactly by the following integral:

∫ 10−15 m

r=0
|ψ(r, t)|24πr2dr .

However, since 10−15 m is such a small radius, the probability density |ψ(r, t)|2 is
almost constant throughout the region of integration. A very good approximation
to the probability may therefore be obtained by multiplying the probability density
at the origin, |ψ(0, t)|2 = 1/πa3

0, by the volume of the tiny sphere, 4
3
π(10−15)3 m3.
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Using this method, the estimate of the probability of finding the electron on top of
the nucleus is

4
3
π (10−15)

3

πa3
0

=
4

3

10−45

(0.53)3 × 10−30
≈ 9× 10−15 .

Momentum Measurements

3. Since
eiθ = cos θ + i sin θ and e−iθ = cos θ − i sin θ ,

it follows that

sin(kx) =
1

2i

(
eikx − e−ikx

)
.

Hence, in the region x < 0, we have:

ψ(x, t) =
−i
2
eikx−iωt +

i

2
e−ikx−iωt .

The first term is a right-going travelling wave and the second term is a left-going travelling
wave.

In lectures, we considered a general superposition of travelling waves,

ψ(x, t) =
∑

n

A(kn)ei(knx−ωt) ,

and argued that |A(kn)|2 was proportional to the probability of obtaining the result h̄kn
in a measurement of momentum. The wavefunction in this question is a simple two-term
example of the general form considered in lectures. The wavevectors of the two terms are
k and −k and their complex amplitudes are A(k) = −i/2 and A(−k) = i/2. Hence, the
two possible results of a momentum measurement are h̄k and −h̄k. Since the two terms
have the same intensity, |A(k)|2 = |A(−k)|2, the probabilities of measuring h̄k and −h̄k
are both 1/2.

Physically, the wavefunction represents a particle in a very (infinitely) spread out wavepacket
of momentum h̄k, which is being reflecting elastically from a potential barrier at x = 0.
Since the wavepacket is so spread out, it seems reasonable that the probability of mea-
suring the incident momentum h̄k is equal to the probability of measuring the reflected
momentum −h̄k.

The Uncertainty Principle

4. The size of a nucleus is about 10−15 m and so the position uncertainty ∆x of an electron
contained in a nucleus is also about 10−15 m. According to the uncertainty principle, the
momentum uncertainty of such an electron satisfies

∆p ≥ h̄

2∆x
≈ 5.25× 10−20 kg m s−1 .
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Since a confined electron is not going anywhere on average, its average momentum 〈p〉
must be zero. Hence

(∆p)2 = 〈(p− 〈p〉)2〉 = 〈p2〉 .
The kinetic energy of the electron, 1

2
m〈v2〉 = 〈p2〉/2m, is therefore equal to (∆p)2/2m:

KE =
(∆p)2

2m
≥ (5.25× 10−20)2

2× 9.11× 10−31
≈ 1.51× 10−9 J ≈ 9.45 GeV.

This shows that the kinetic energy of the confined electron must be at least 9.45 GeV,
and hence that an electron of energy 1 MeV could not have been contained in the nucleus
before the radioactive decay process took place.

To be careful, we should also consider the potential energy of the confined electron. If
we assume that the electron is 10−15 m away from a nucleus with atomic number Z = 50,
the potential energy (given by −Ze2/4πε0r) is only about −0.07 GeV. This is negligible
in comparison with the kinetic energy.

5. (i) Starting from the definition of the rms momentum,

(∆p)2 = 〈(p− 〈p〉)2〉 ,

and using the result 〈p〉 = 0 given in the question, we obtain (∆p)2 = 〈p2〉. Similarly,
we can show that (∆x)2 = 〈x2〉. The expression for the total energy,

〈E〉 =
〈p2〉
2m

+
1

2
s〈x2〉 ,

may therefore be rewritten as

〈E〉 =
(∆p)2

2m
+

1

2
s(∆x)2 =

(∆p)2

2m
+

1

2
mω2(∆x)2 ,

where the last step followed because ω =
√
s/m.

(ii) The uncertainty principle states that ∆x∆p ≥ h̄/2. If we use this to eliminate ∆p
from the expression for 〈E〉 we obtain

〈E〉 ≥ 1

2m

h̄2

4(∆x)2
+

1

2
mω2(∆x)2 =

h̄2

8m(∆x)2
+

1

2
mω2(∆x)2 .

The value of ∆x that makes the right-hand side as small as possible (and hence
imposes the weakest possible condition on 〈E〉) may be found by differentiating with
respect to ∆x and setting the result equal to zero:

d

d(∆x)

[
h̄2

8m(∆x)2
+

1

2
mω2(∆x)2

]
=

−h̄2

4m(∆x)3
+mω2∆x = 0 .

Solving this equation gives ∆x =
√
h̄/2mω. Substituting back into the inequality for

〈E〉 gives

〈E〉 ≥ h̄2

8m(h̄/2mω)
+

1

2
mω2

(
h̄

2mω

)
=

1

4
h̄ω +

1

4
h̄ω ,
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and hence

〈E〉 ≥ 1

2
h̄ω ,

as required.

6. The energy-time uncertainty principle,

∆E∆t ≥ h̄

2
,

relates the lifetime ∆t of a state to its energy uncertainty ∆E. For ∆t = 2.6× 10−10 s we
obtain

∆E ≥ 1.05× 10−34

2× 2.6× 10−10
≈ 2.02× 10−25 J ≈ 1.26× 10−6 eV.

Hence, the minimum energy uncertainty of the emitted photons is 1.26× 10−6 eV.

7. In order for a virtual particle of energy mc2 to pop out of the vacuum, the energy uncer-
tainty ∆E must be (at least) mc2. According to the energy-time uncertainty principle in
the form ∆E∆t ∼ h̄, the lifetime of such a particle is ∆t ∼ h̄/∆E ∼ h̄/mc2. The speed of
the particle must be less than the speed of light, and hence the distance it travels during
its lifetime must be less than c∆t ∼ h̄/mc.

Equating this distance to the range of the nuclear force gives

h̄

mc
≈ 1.4× 10−15 m ,

and hence

mc2 ≈ h̄c

1.4× 10−15
=

1.05× 10−34 × 3.00× 108

1.4× 10−15
= 2.25× 10−11 J .

In eV, this becomes

mc2 ≈ 2.25× 10−11

1.60× 10−19
≈ 141× 106 eV = 141 MeV ,

or, equivalently, m ≈ 141 MeV/c2.

The Schrödinger Equation

8. The time-independent Schrödinger equation is

− h̄2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x) .

If the wavefunction

ψn(x) =

{ √
2
d

sin
(
nπx
d

)
0 < x < d

0 otherwise

is a normalised energy eigenfunction, the following conditions hold:
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(a) ψn(x) satisfies the boundary conditions: ψn(0) = ψn(d) = 0.

(b) ψn(x) satisfies the time-independent Schrödinger equation for 0 < x < d.

(c) ψn(x) is normalised.

Consider these conditions one by one:

(a) By inspection, ψn(x) satisfies the boundary conditions for n = 1, 2, . . ..

(b) Substitute ψn(x) into the left-hand side of the Schrödinger equation for 0 < x < d:

− h̄2

2m

d2ψn(x)

dx2
+ V (x)ψn(x) = − h̄2

2m

d2ψn(x)

dx2
[V (x) = 0 for 0 < x < d]

= − h̄2

2m

√
2

d

d2

dx2
sin

(
nπx

d

)

=
h̄2

2m

(
nπ

d

)2
√

2

d
sin

(
nπx

d

)

= Enψn(x) , where En =
h̄2n2π2

2md2
.

Hence, ψn(x) satisfies the time-independent Schrödinger equation in the region 0 <
x < d. The corresponding energy eigenvalue is En = h̄2n2π2/2md2.

(c) If ψn(x) is normalised, the integral

N =
∫ d

0
|ψn(x)|2 dx

must be equal to 1. Check this by evaluating the integral:

N =
2

d

∫ d

0
sin2

(
nπx

d

)
dx =

2

d
× d

2
= 1 .

Hence, ψn(x) is normalised.

9. Using the result of Q9, the energy eigenvalues are:

En =
h̄2n2π2

2md2
n = 1, 2, . . . .

The energy emitted as the nucleon falls from the n = 2 level to the n = 1 level is

E2 − E1 =
3h̄2π2

2md2
≈ 3× (1.05× 10−34)2 × π2

2× 1.67× 10−27 × (10−15)2

≈ 9.8× 10−11 J ≈ 610 MeV .

This is a sensible number. The energy released in fission is about 200 MeV per nucleus.

10. The classical angular frequency of vibration is ωvib =
√
s/mreduced, where

mreduced =
(

1

mC

+
1

mO

)−1

=
(

1

12
+

1

16

)−1

≈ 6.86 atomic mass units.
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Hence

ωvib =

√
1857

6.86× 1.66× 10−27
≈ 4.04× 1014 Radians s−1 .

(i) The energy of the photon emitted when a CO molecule makes a transition between
neighbouring vibrational states is the difference between the energies of those states.
The energy levels of a QM simple harmonic oscillator are (n + 1

2
)h̄ωvib, where n =

0, 1, 2, . . .. Hence, the energy E of the emitted photon is h̄ωvib. Since the energy
E and angular frequency ω of the photon are related via E = h̄ω, it follows that
ω = ωvib. The frequency of the emitted photon is therefore the same as the classical
vibrational frequency of the molecule, which makes sense. The photon wavelength is

λ =
c

ν
=

c

νvib
=

2πc

ωvib
≈ 4.67× 10−6 m .

(ii) The vibrational zero-point energy of a CO molecule is

1

2
h̄ωvib ≈ 2.12× 10−20 J ≈ 0.13 eV .

11. Substitute the trial solution ψ(x) = e−αx
2

into the left-hand side of the Schrödinger equa-
tion:

− h̄2

2m

d2ψ(x)

dx2
+

1

2
sx2ψ(x) = − h̄2

2m

d2

dx2
e−αx

2

+
1

2
sx2e−αx

2

= − h̄2

2m

d

dx

(
−2αxe−αx

2
)

+
1

2
sx2e−αx

2

=
h̄2α

m

d

dx

(
xe−αx

2
)

+
1

2
sx2e−αx

2

=
h̄2α

m

(
e−αx

2 − 2αx2e−αx
2
)

+
1

2
sx2e−αx

2

=
h̄2α

m
e−αx

2

+

(
1

2
s− 2h̄2α2

m

)
x2e−αx

2

.

If ψ(x) is to be a solution of the Schrödinger equation, this must equal a constant, E,
times e−αx

2
. The value of α must therefore be chosen to ensure that the coefficient of the

x2e−αx
2

term is zero. Hence

α2 =
ms

4h̄2 ⇒ α =

√
sm

2h̄
.

If this condition is met, ψ(x) is an energy eigenfunction with energy eigenvalue

E =
h̄2α

m
=

h̄2

m

√
sm

2h̄
=

1

2
h̄

√
s

m
=

1

2
h̄ω ,

where ω =
√
s/m is the classical angular frequency of the oscillator.

Q6 showed that the energy of a quantum mechanical simple harmonic oscillator must be
≥ 1

2
h̄ω, and so the eigenfunction found here must be the (unnormalised) ground state.
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12. Inside the barrier, the Schrödinger equation is

− h̄2

2m

d2ψ(x)

dx2
+ V ψ(x) = Eψ(x) ,

with V > E. A simple rearrangement gives

d2ψ(x)

dx2
=

2m(V − E)

h̄2 ψ(x) = γ2ψ(x) ,

where

γ =

√
2m(V − E)

h̄2

is real because V − E is greater than zero. By inspection, the two independent solutions
of this second-order differential equation are eγx and e−γx, and so the general solution is

ψ(x) = Ae−γx +Beγx ,

where A and B are arbitrary constants to be determined from the boundary conditions.

Assume now that the barrier stretches from x = 0 to x = a and that the particles are
incident from the left. We discard the eγx solution on physical grounds: it would make
little sense if the wavefunction, and hence the probability density, increased with distance
into the barrier. (In fact, as you will find out next year, the exact wavefunction inside a
barrier of finite width does include a small amount of the eγx solution. However, as long
as the barrier is wide and the tunnelling probability low, the value of B is so small that
this contribution can be ignored.) Inside the barrier, then, the wavefunction ψ(x) is equal
to Ae−γx, as shown in the figure.

x=ax=0

Metal

ikx

Gap Metal

e
ikx t eA xe−γ

It follows that
|ψ(x = a)|2
|ψ(x = 0)|2 ≈

(
e−γa

)2
= e−2γa .

Since |ψ(x)|2 is proportional to the probability density at position x, this equation shows
that the probability density at the right-hand edge of the barrier is e−2γa (which is normally
a very small number) times the probability density at the left-hand edge. The tunnelling
probability is therefore equal to e−2γa.

The work function W is the minimum energy required to remove an electron from a piece
of metal. If additional energy W is supplied to a metallic electron with energy E, that
electron is only just able to escape from the surface. This implies that the potential energy
V of the electron outside the metal must be E + W . If no extra energy is supplied (so
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that the electron from the metal still has energy E), the Schrödinger equation in the gap
region takes the form,

− h̄2

2m

d2ψ(x)

dx2
+ (E +W )ψ(x) = Eψ(x) ,

and hence γ =
√

2m(E +W − E)/h̄2 =
√

2mW/h̄2.

In the case when a = 10−6 m and W = 5 eV, we obtain

γ =

√
2× 9.11× 10−31 × 5× 1.60× 10−19

1.05× 10−34
≈ 1.15× 1010 m−1 .

The tunnelling probability is therefore

e−2γa ≈ e−23,000 = 10−23,000×log10 e ≈ 10−10,000 .

This is very small! Electron tunnelling is important in scanning tunnelling microscopes,
where the gap is comparable to the size of an atom (10−10 m), but not for the much larger
gap considered here.

Extra Questions for Enthusiasts

13. (i) In order to tell which slit the electron went through, the optical instrument that
detects the scattered photons must be able to resolve features of size d. Since the
resolution cannot be much better than the wavelength of the light used, λphoton must
be less than or approximately equal to d.

(ii) The figure shows a photon moving in the x direction scattering from an electron
moving in the z direction.

x

hν

hν

e

e-

- z

The x momentum transferred to the electron may take any value from 0 (if the photon
is not deflected at all) to 2h/λphoton (if the photon scatters back towards its source),
but the typical value is around h/λphoton. The initial z momentum of the electron is
pz = h/λelectron. The value of pz changes slightly when the photon scatters, but if the
change in electron direction is small the change in pz will also be small. Hence, even
after the photon has been scattered, pz ≈ h/λelectron.

After the scattering event, the electron’s momentum vector looks something like this:
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∆θ

p

λelectron~ h/
z

p

p ~ h/λphotonx

If the scattering angle ∆θ is small, so that tan(∆θ) ≈ ∆θ, it follows that

∆θ ≈ tan(∆θ) =
px
pz
∼ λelectron

λphoton

.

(iii) The angular spacing between adjacent diffraction maxima or minima is λelectron/d.
Since λphoton ≤ d (see part (i)), the angular spacing must be ≤ λelectron/λphoton. But
this is exactly equal to ∆θ, the uncertainty in the direction of the electron caused by
scattering the photon (part (ii)). Hence, the scattering of the photon is sufficient to
smear out the diffraction pattern completely.

14. The integral we have to evaluate is

∫ ∞

−∞
ψ∗n(x)ψm(x) dx =

2

d

∫ d

0
sin

(
nπx

d

)
sin

(
mπx

d

)
dx

=
2

d

d

π

∫ π

0
sin(nθ) sin(mθ) dθ (where θ = πx/d)

=
1

π

∫ π

0
[cos((n−m)θ)− cos((n+m)θ)] dθ ,

where the last step used the expression for sin(nθ) sin(mθ) given in the question. For any
non-zero integer j, the integral

∫ π

0
cos(jθ) dθ =

[
1

j
sin(jθ)

]π

0

= 0 .

Hence, if n and m are unequal positive integers,

∫ ∞

−∞
ψ∗n(x)ψm(x) dx = 0 .

If n = m, so that cos((n−m)θ) = 1, we obtain

∫ ∞

−∞
ψ∗n(x)ψm(x) dx =

∫ ∞

−∞
ψ∗n(x)ψn(x) dx

=
1

π

∫ π

0
[1− cos(2nθ)]dθ =

1

π

∫ π

0
dθ = 1 ,

demonstrating that ψn(x) is normalised.

15. If φ(x) =
∑∞
n=1 cnψn(x) is normalised, then

∫ ∞

−∞
φ∗(x)φ(x) dx = 1 .
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Substituting the expansion of φ(x) into the normalisation integral gives

∫ ∞

−∞
φ∗(x)φ(x) dx =

∫ ∞

−∞

∞∑

n=1

c∗nψ
∗
n(x)

∞∑

m=1

cmψm(x) dx

=
∞∑

n=1

∞∑

m=1

c∗ncm

∫ ∞

−∞
ψ∗n(x)ψm(x) dx .

The integral in this expression is equal to 1 if n = m and to 0 otherwise. Hence, all terms
with n 6= m vanish and only the n = m terms are left:

∫ ∞

−∞
φ∗(x)φ(x) dx =

∞∑

n=1

c∗ncn

∫ ∞

−∞
ψ∗n(x)ψn(x) dx =

∞∑

n=1

c∗ncn .

This shows that φ(x) is normalised if and only if

∞∑

n=1

c∗ncn = 1 .

Since c∗ncn is greater than or equal to zero, and since the sum of c∗ncn over all n gives 1, it
is reasonable (and right) to guess that c∗ncn is the probability that a measurement of the
energy gives the result En (where En is the energy eigenvalue corresponding to the energy
eigenfunction ψn(x)).
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