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Quantum Physics Answer Sheet 2

Compton Scattering

1. (i) The wavelength of the incident photons is

λ =
hc

E
≈ 6.63× 10−34 × 3.00× 108

20× 103 × 1.60× 10−19
≈ 6.22× 10−11 m .

The change in wavelength is given by the Compton formula with θ = 60o:

λ′ − λ =
h

mc
(1− cos θ) ≈ 6.63× 10−34 × 0.5

9.11× 10−31 × 3.00× 108
≈ 1.21× 10−12 m .

Combining the values of λ and λ′ − λ gives the wavelength of the scattered photons:

λ′ ≈ 6.34× 10−11 m .

(ii) The energy lost by a photon as it scatters is:

E − E ′ = hc
(

1

λ
− 1

λ′

)

= 6.63× 10−34 × 3.00× 108
(

1

6.22× 10−11
− 1

6.34× 10−11

)

≈ 6.05× 10−17 J

≈ 378 eV .

Warning: this answer is the difference of two much larger numbers (the incoming and

outgoing photon energies) and is subject to considerable rounding error. For example, if

you store intermediate values such as λ and λ′ to full calculator precision, the final result

changes by several eV. Short of using more accurate values for the fundamental constants,

there is little that can be done about this.

All this energy is transferred to the electron as recoil energy. The work function of a
typical solid is only 5 or 10 eV, so some of the recoiling electrons will certainly escape
from the metal.

The largest change in wavelength would be obtained when θ = 1800, in which case λ′−λ =
2h/mc ≈ 4.85 × 10−12 m. The maximum possible wavelength of the scattered photon
(assuming only one scattering) is 6.22× 10−11 + 4.85× 10−12 ≈ 6.71× 10−11 m.

2. (i) The initial photon wavelength is

λinit =
hc

E
≈ 6.63× 10−34 × 3.00× 108

106 × 1.60× 10−19
≈ 1.24× 10−12 m .
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The final photon wavelength after 1026 Compton scattering events is 500 nm. If
we assume that each scattering event increases the photon wavelength by the same
amount ∆λ, we obtain

1026∆λ ≈ (500× 10−9 − 1.24× 10−12) m ,

and hence
∆λ ≈ 5× 10−33 m .

(ii) The Compton formula says that

∆λ =
h

mc
(1− cos θ) .

Since ∆λ (≈ 5× 10−33 m) � h/mc (≈ 2.43× 10−12 m), the average scattering angle
θ must be very small (so that cos θ is very close to 1). We can therefore make the
approximation cos θ ≈ 1− θ2/2 to obtain ∆λ ≈ hθ2/2mc, and hence

θ ≈
√

2mc∆λ

h

≈
√

2× 9.11× 10−31 × 3.00× 108 × 5× 10−33

6.63× 10−34

≈ 6.42× 10−11 radians

≈ 3.68× 10−9 degrees .

(iii) In 106 years, a photon travels a distance:

d = ct = 3.00× 108 × 60× 60× 24× 365× 106

≈ 9.46× 1021 m .

During this time, it scatters 1026 times. Hence, the average distance travelled by
a photon between scattering events is 9.46 × 1021/1026 ≈ 9.46 × 10−5 m or roughly
0.1 mm.

De Broglie Waves

3. In order to use neutron diffraction to study atomic positions and atomic-scale magnetic
fields, the neutron De Broglie wavelength must be comparable to the size of an atom:

λ ≈ 10−10 m .

The kinetic energy of the neutron is thus:

1

2
mv2 =

p2

2m
=

h2

2mλ2
≈ (6.63× 10−34)2

2× 1.67× 10−27 × 10−20

≈ 1.32× 10−20 J ≈ 0.083 eV .
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This is the same as the average energy 3kBT/2 of a neutron in thermal equilibrium at
temperature

T ≈ 2× 1.32× 10−20

3× 1.38× 10−23
≈ 640 K .

4. The De Broglie wavelength of a 100 eV electron is given by:

100 eV =
p2

2m
=

h2

2mλ2
,

and hence

λ =
6.63× 10−34

√
2× 9.11× 10−31 × 100× 1.60× 10−19

≈ 1.23× 10−10 m .

w/2

d θ
l

From Q8 of Problem Sheet 1, the first zero in the diffraction pattern from a slit of width
d occurs where sin θ = λ/d. Hence,

θ = sin−1(λ/d) ≈ sin−1(1.23× 10−10/10−6) ≈ 1.23× 10−4 radians .

The width w of the central diffraction peak is 2l tan θ, where l = 1 m is the distance from
the slit to the screen. Hence,

w = 2× 1× tan θ ≈ 2θ ≈ 2.46× 10−4 m .

5. A particle of mass m and momentum p has kinetic energy p2/2m. If the kinetic energy is
equal to 3kBT/2:

p2

2m
=

3kBT

2
,

then
p =

√
3mkBT .

Combining this result with De Broglie’s equation, p = h/λ, gives:

λ =
h

p
=

h√
3mkBT

,

as required.
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Avogadro’s number of He atoms occupy a volume of 27.6 × 10−6 m3. Hence, the volume
per atom d3 is

27.6× 10−6

6.02× 1023
≈ 4.58× 10−29 m3 .

Taking the cube root, we obtain d ≈ 3.58× 10−10 m.

To find the temperature T at which λ = d, we have to solve the equation

h√
3mkBT

= d .

Hence

T =
1

3mkB

(
h

d

)2

≈ 1

3× 4× 1.66× 10−27 × 1.38× 10−23

(
6.63× 10−34

3.58× 10−10

)2

≈ 12.5 K .

When the temperature is comparable to or smaller than this value, the De Broglie wave-
length of the He atoms will be the same as or greater than the interparticle spacing, and
the wave-like properties of the atoms will be important.

6. The figure below shows that in order for the De Broglie wave of wavelength λ to “fit in” to
the box, the box side d must be an integer multiple of λ/2: d = nλ/2, where n = 1, 2, . . .

λ/2d = 2λ/2 d = 

d

The maximum possible De Broglie wavelength is therefore 2d. The smallest possible
momentum is

pmin =
h

λmax

=
h

2d
≈ 6.63× 10−34

2× 3.58× 10−10
≈ 9.26× 10−25 kg ms−1 .

The smallest possible KE is

KEmin =
p2

min

2m
≈ (9.26× 10−25)2

2× 4× 1.66× 10−27
≈ 6.46× 10−23 J .

The thermal KE of 3kBT/2 would equal KEmin when

T =
2 KEmin

3kB
≈ 2× 6.46× 10−23

3× 1.38× 10−23
≈ 3.12 K .
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The Bohr Atom

7. The Rydberg formula is
1

λ
= RH

(
1

n2
f

− 1

n2
i

)
,

where RH = 1.097 × 107 m−1. In this case, nf = 2 and λ = c/ν = (3.00 × 108)/(7.316×
1014) = 4.10× 10−7 m.

Rearranging the Rydberg formula gives:

n2
i =

(
1

n2
f

− 1

RHλ

)−1

≈
(

1

4
− 1

1.097× 107 × 4.10× 10−7

)−1

≈ 36.1 .

Hence, the initial energy level was the n = 6 level.

8. The Bohr orbit of the electron must still contain a whole number of De Broglie wavelengths.
The angular momentum L = mvr must therefore be quantised just as in a hydrogen atom:

L = nh̄ , n = 1, 2, 3, . . . .

However, since the Coulomb attraction between the orbiting electron and the nucleus is
larger by a factor Z than in a hydrogen atom, the equation linking centripetal force and
centripetal acceleration becomes:

Ze2

4πε0r2
=

mv2

r
=

(mvr)2

mr3
.

Replacing mvr by nh̄ and rearranging gives the following formula,

rn =
4πε0(nh̄)2

Zme2
,

for the radius of the nth Bohr orbit.

The total energy of this orbit is

En = KEn + PEn

=
1

2
mv2

n −
Ze2

4πε0rn

=
1

2

Ze2

4πε0rn
− Ze2

4πε0rn

(
since

mv2
n

rn
=

Ze2

4πε0r2
n

)

= − Z2me4

2(4πε0h̄)2n2
(substituting for rn)

≈ −Z
2 × 13.6 eV

n2
.

9. (i) The shortest wavelength (highest energy) photon that a hydrogen atom can emit
without ending up in the ground-state (nf = 1) energy level is produced when the
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atom decays from an initial state with very large ni to the nf = 2 final state. The
wavelength of the photon emitted in this transition satisfies the equation

1

λ
= RH

(
1

4
− 1

n2
i

)
≈ RH

4
,

and hence

λ ≈ 4

RH
≈ 3.65× 10−7 m .

(ii) For the H atom, the normal Rydberg formula applies:

1

λ
= RH

(
1

n2
f

− 1

n2
i

)
,

with λ = 121.5 nm. Hence

1

n2
f

− 1

n2
i

=
1

λRH
≈ 1

121.5× 10−9 × 1.097× 107
≈ 0.75 .

The only solution of this equation with ni and nf integers is ni = 2 and nf = 1. In
other words, the transition is from the first excited state to the ground state.

For the He+ ion, the energies of the states are Z2 = 22 = 4 times what they were in
the H atom (see Q8). Hence, the Rydberg formula becomes

1

λ
= 4RH

(
1

n2
f

− 1

n2
i

)
,

and the equation for nf and ni is

1

n2
f

− 1

n2
i

≈ 0.75

4
=

3

16
.

This equation can be solved by doubling the values of ni and nf obtained for the H
atom. In other words, the He+ transition is from the ni = 4 level to the nf = 2 level.

10. According to the Bohr model, the binding energy and radius of an H atom in its ground
state are

Ebinding =
me4

2(4πε0h̄)2
≈ 13.6 eV ,

r =
4πε0h̄

2

me2
≈ 0.53 Å .

In the case of a positronium atom, the electron mass m has to be replaced by the reduced
mass mreduced = (1/m+ 1/m)−1 = 0.5m. Hence

Ebinding =
0.5me4

2(4πε0h̄)2
≈ 6.8 eV ,

r =
4πε0h̄

2

0.5me2
≈ 1.06 Å .
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11. (i) The potential in this example is peculiar, but a Bohr orbit of radius r still has length
2πr, and the De Broglie wavelength of the particle must still “fit in” to this length:

2πr = nλ (n any integer > 0) .

Since p = mv = h/λ, this condition translates to

mvr = mv
nλ

2π
= p

nλ

2π
=
nh

2π
= nh̄ .

In other words, the angular momentum must still be a multiple of h̄.

The next step in deriving the Bohr model of the hydrogen atom is to write down
Newton’s second law: force = mass × centripetal acceleration. In this case, the force
is

F = −dV
dr

= −C ,

where the −ve sign shows that the force acts towards the origin (in the −r direction).
Hence, Newton’s second law reads:

C =
mv2

r
=

(mvr)2

mr3
.

Using the angular momentum quantisation conditions, mvr = nh̄, then gives

C =
h̄2n2

mr3
n

,

or

rn =

(
h̄2n2

mC

)1/3

,

as required.

(ii) The energy En of the nth orbit is:

En = KE + PE =
1

2
mv2

n + Crn

=
(mvnrn)2

2mr2
n

+ Crn =
h̄2n2

2mr2
n

+ Crn

=
h̄2n2

2m
(
h̄2n2

mC

)2/3
+ C

(
h̄2n2

mC

)1/3

=
C

2

(
h̄2n2

mC

)1/3

+ C

(
h̄2n2

mC

)1/3

=
3

2

(
C2h̄2n2

m

)1/3

,

as required.
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