
Thursday 10th March 2005

Quantum Physics Answer Sheet 1

Units and Magnitudes

1. Number of atoms per unit volume is:

n =
Mass per unit volume

Mass per atom
=

2700

27× 1.66× 10−27
= 6.02× 1028 m−3 .

Volume per atom is 1/n = 1.66 × 10−29 m3. If we assume that each atom is a sphere of
radius r, we have

4

3
πr3 = 1.66× 10−29

and hence r = 1.58 × 10−10 m = 1.58 Å. This is an overestimate because it is impossible
to fill space with spheres (there are always gaps between them). A different estimate may
be obtained by assuming that the spheres are stacked in a simple cubic lattice. Each cube
of side 2r then contains one atom of radius r and the volume per atom is 8r3. This gives

8r3 = 1.66× 10−29

and hence r = 1.28×10−10 m = 1.28 Å. It is possible to pack spheres much more efficiently
than in a simple cubic lattice (the packing in Al is actually face-centred cubic — the most
efficient regular packing of spheres), and so the true answer must lie somewhere between
these two estimates.

2. The KE of the electrons is 25 keV = 0.025 MeV. Since the KE is the total energy, mγc2,
minus the rest energy, mc2, this gives:

0.025 = γmc2 −mc2 =


 1√

1− v2

c2

− 1


× 0.51 .

Aside: I remember finding these “relativistic” units very confusing the first time I
met them. The statement that the mass m of an electron is 0.51 MeV/c2 is exactly
equivalent to the statement that mc2 (which is, of course, an energy) is equal to
0.51 MeV. Similarly, if you are told that the momentum p is equal to 1 MeV/c, the
implication is that pc (which also has the dimensions of an energy) is equal to 1 MeV.

A little algebra now gives

1− v2

c2
=

1
(
1 + 0.025

0.51

)2 ,

and hence
v

c
≈ 0.30 .

The relativistic effects (which depend on v2/c2) are small but not negligible. Television
designers presumably need to take them into account.
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3. For a very rough estimate, equate kBT (or 3kBT/2 if you insist) to 13.6 eV. This gives:

T =
13.6× 1.6× 10−19

1.38× 10−23
≈ 160, 000 K .

Travelling Waves

4. To work out the wavelength, note that

ψ
(
x +

2π

k
, t
)

= a cos
(
−k

[
x+

2π

k

]
− ωt+ φ

)

= a cos(−kx− ωt+ φ− 2π) = ψ(x, t) .

Hence, ψ(x, t) changes by one full period as x increases by 2π/k at constant t. In other
words, the wavelength λ = 2π/k.

Similarly, to work out the time period, note that

ψ
(
x, t +

2π

ω

)
= a cos

(
−kx− ω

[
t +

2π

ω

]
+ φ

)

= a cos(−kx− ωt+ φ− 2π) = ψ(x, t) .

Hence, ψ(x, t) changes by one full period as t increases by 2π/ω at constant x. In other
words, the time period T = 2π/ω. The frequency ν = 1/T is therefore given by ν = ω/2π.

To work out the velocity of the crests, consider the crest at the point xcrest where the
argument of the cosine function is zero:

−kxcrest − ωt+ φ = 0 .

This equation rearranges to

xcrest =
φ

k
− ω

k
t .

Comparing with the equation xcrest = x0 + vt that describes uniform motion at velocity v,
we see that the wave crest is at position x0 = φ/k at time t = 0 and is moving at velocity
−ω/k.

5. The phase velocity is

v =
ω

k
=

√
g

k
=

√
gλ

2π
≈
√

9.8× 10

2π
= 3.96 ms−1 .

Complex Representation of Waves, Interference and Diffraction

6. Since eiθ = cos θ + i sin θ, it follows that cos θ = Re(eiθ) and sin θ = Re(−ieiθ). Hence

cos θ + sin θ = Re
(
eiθ − ieiθ

)
= Re

(
(1− i)eiθ

)
.
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The prefactor 1− i may be rewritten in the form reiφ, where:

r =
√

[Re(1− i)]2 + [Im(1− i)]2 =
√

12 + (−1)2 =
√

2 ,

φ = tan−1

(
Im(1− i)
Re(1− i)

)
= tan−1(−1) = −π

4
.

(An alternative way to find r and φ is to draw the complex number 1 − i in the Argand
diagram and note its length and argument.)

Hence

cos θ + sin θ = Re
(√

2e−iπ/4eiθ
)

=
√

2Re
(
ei(θ−π/4)

)

=
√

2 cos(θ − π/4) ,

as required.

7. (i) Using real arithmetic only:

ψ(x, t) = a cos(kx− ωt) + a cos(−kx− ωt)
= a(cos kx cosωt+ sin kx sinωt) + a(cos kx cosωt− sin kx sinωt)

= 2a cos kx cosωt ,

where the first step used the trigonometic identity

cos(θ + φ) = cos θ cosφ− sin θ sinφ,

and the information that cos θ is an even function [cos(−θ) = cos θ] while sin θ is an
odd function [sin(−θ) = − sin θ].

(ii) Using complex arithmetic:

ψ(x, t) = aei(kx−ωt) + aei(−kx−ωt) .

(Actually, of course, ψ(x, t) is the real part of the expression on the RHS. From now
on we shall take this as understood.) Hence:

ψ(x, t) = ae−iωt
(
eikx + e−ikx

)
= 2ae−iωt cos kx .

This step used the identities

eiθ = cos θ + i sin θ and e−iθ = cos θ − i sin θ ,

from which it follows that

eiθ + e−iθ = 2 cos θ (and eiθ − e−iθ = 2i sin θ) .

Taking the real part of ψ(x, t) now gives the real wavefunction

ψ(x, t) = 2a cos kx cosωt ,
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exactly as in part (i).

The amplitude atotal of ψ(x, t) depends on position,

atotal(x) = 2a cos kx ,

and hence so does the intensity,

Itotal(x) = a2
total(x) = 4a2 cos2 kx .

The position average of the intensity is 4a2 times the position average of cos2 kx. As
long as you average over a whole number of half periods, the average value of cos2 θ (or
sin2 θ) is equal to 1/2 (this is easy to prove by starting from the trigonometic identity
cos2 θ = (1 + cos(2θ))/2 and noting that cos(2θ) averages to zero). Hence, the average
intensity is 2a2.

This is expected because the average intensity is proportional to the average energy per unit
volume. Assuming that energy is conserved, the average energy density of the standing
wave must equal the sum of the average energy densities of the two travelling waves.
Both travelling waves have intensity a2 (independent of position), and hence the average
intensity of the standing wave must be 2a2.

8. (i) The wave emerging from the segment ∆y at height y is

Aei(k[ζ−(−y sin θ)]−ωt)∆y = Aei(kζ−ωt+ky sin θ)∆y .

(ii) The total wave emerging in the ζ direction is the sum of the waves emerging from all
the little segments:

ψ(ζ, t) =
∑

segments

Aei(kζ−ωt+ky sin θ)∆y ,

where, for each segment (or, equivalently, for each term in the sum), y is the position
of the centre of that segment. In the limit as ∆y → 0, the sum turns into the integral:

ψ(ζ, t) =
∫ d/2

−d/2
Aei(kζ−ωt+ky sin θ)dy .

Since ei(kζ−ωt+ky sin θ) = ei(kζ−ωt)eiky sin θ, this is equivalent to

ψ(ζ, t) = Aei(kζ−ωt)
∫ d/2

−d/2
eiky sin θdy ,

as required.

If you are confused about the relationship between the sum and the integral,
consider the diagram below. The integral of f(y) from a to b is the sum of the
areas of the segments of width ∆y.
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∆ y

f(y)

ya b

Since the area of each segment is approximately f(y)∆y, it follows that

∫ b

a
f(y)dy ≈

∑

segments

f(y)∆y .

In fact, the integral is normally defined as the limit of this sum as ∆y tends to
zero.

(iii) The integral ∫ d/2

−d/2
eiky sin θdy

may be written as ∫ d/2

−d/2
eαydy ,

where α = ik sin θ. This is easy to integrate:

∫ d/2

−d/2
eαydy =

[
eαy

α

]d/2

−d/2
=

1

α

(
eαd/2 − e−αd/2

)

=
e

1
2
ikd sin θ − e− 1

2
ikd sin θ

ik sin θ
=

d sin
(
kd sin θ

2

)

kd sin θ
2

,

where the last step used the identity eiφ − e−iφ = 2i sinφ discussed in the answer to
question 7.

The wavefunction ψ(ζ, t) is therefore given by:

ψ(ζ, t) = Ad
sin

(
kd sin θ

2

)

kd sin θ
2

ei(kζ−ωt) .

The intensity I is the square modulus of the complex amplitude (which is everything
in front of the ei(kζ−ωt) factor). Hence

I =
|A|2d2 sin2

(
kd sin θ

2

)

(
kd sin θ

2

)2 ,

as required.
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(iv) The diffraction pattern looks like this (note that the horizontal axis shows values of
kd sin θ

2π
instead of values of kd sin θ

2
):
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Single Slit Diffraction Pattern

The first zero occurs where kd sin θ
2π

= 1 and hence where

k =
2π

λ
=

2π

d sin θ
.

This implies that
λ = d sin θ .

The difference in the lengths of the paths emerging from the top and bottom of the
slit is one wavelength.

Photons

9. The total energy entering each eye per second is the energy striking a unit area per second
times the area of the pupil:

energy entering eye per second = 1.4× 10−10 × π(0.0035)2

≈ 5.39× 10−15 J .

Average number of photons entering eye per second is

energy entering eye per second

energy per photon
=

5.39× 10−15

hc/λ

=
5.39× 10−15 × 500× 10−9

6.63× 10−34 × 3.00× 108

≈ 13, 500 .
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The average number of photons inside eye at any one time is

number entering per second× length of eye

distance a photon travels per second

=
13500× 0.04

3.00× 108
≈ 1.8× 10−6 .

The actual number of photons in the eye is almost always zero.

Since light always arrives as individual photons, all light detectors must be capable of
detecting individual photons. A more interesting question is whether the arrival of a
single photon is sufficient to trigger one of the detectors (rods and cones) in the retina, or
whether it is necessary to bombard that detector with many photons in close succession.
Given that the eye takes much less than 1 s to process a new image, it is reasonable to
assume that the “memory” of the detectors is less than, say, 0.1 s. Any effects caused
by photons that arrived more than 0.1 s ago can therefore be ignored. Within 0.1 s, only
1,350 photons enter the eye, all of which are focused onto the small area of the retina
where the image is formed. Are there more than 1,350 detectors in this area? I have no
idea, but I doubt it. In other words, the ability of the eye to see the star provides no
convincing evidence that the detectors in the retina are triggered by single photons — it
may be necessary to hit the same detector with several photons in quick succession.

10. The electron energy is 30 keV and so the energy hν = hc/λ of the X-ray photons produced
must be less than or equal to 30 keV. The minimum photon wavelength is therefore

λ =
hc

30 keV
=

6.63× 10−34 × 3.00× 108

30× 103 × 1.6× 10−19
= 4.14× 10−11 m.

11. (i) Light of wavelength greater than λmax = 310 nm is incapable of producing a current.
Hence the work function W is given by:

W =
hc

λmax
=

6.63× 10−34 × 3.00× 108

310× 10−9
≈ 6.42× 10−19 J .

W =
6.42× 10−19

1.60× 10−19
≈ 4.00 eV .

(ii) The energy of a photon of wavelength 200 nm is

E =
hc

λ
=

6.63× 10−34 × 3.00× 108

200× 10−9
≈ 9.95× 10−19 J ,

or

E =
9.95× 10−19

1.60× 10−19
≈ 6.22 eV .

(iii) The stopping potential V0 at 200 nm is given by Einstein’s equation, W + eV0 = E.
Hence

V0 = 6.22− 4.00 = 2.22 V .

The maximum KE of the emitted electrons is 2.22 eV.
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12. (i) The data look like this:

ν
15

(10   Hz)

eV0 (eV)

0.5 0.750.25 1.0 1.25

2.0

3.0

1.0

0.0

−1.0

−2.0

Since the y intercept is −W , the work function W is 2.0 eV.

(ii) The slope of the line is

(3.0− 1.0) eV

(1.25− 0.75)× 1015 Hz
=

2× 1.60× 10−19 J

0.5× 1015 s−1
= 6.4× 10−34 Js .

Assuming that the experimental errors were reflected in the precision with which
the measured values were quoted, this is consistent with the accepted value of 6.63×
10−34 Js. (The fact that the three data points lie on a perfect straight line is suspicious,
though.)
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