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Quantum Physics Handout

Probabilities and Probability Densities

Probabilities

Suppose you throw N darts at a dart board and record the scores. The
results of the first 21 throws are shown in Fig. 1.
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Figure 1: The first 21 scores recorded in the dart game

Another way to summarise the data is to plot the number ns of darts ob-
taining each possible score s. An example is shown in Fig. 2. Since no single
dart can score more than 60, ns = 0 for all s > 60.

The total number of darts thrown is equal to the number n0 that scored 0
plus the number n1 that scored 1 plus the number n2 that scored 2 plus . . .

n0 + n1 + n2 + . . . = N ,

or, equivalently,
∞∑

score s=0

ns = N .

Dividing both sides of this equation by N gives
∞∑

s=0

ps = 1 ,
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Figure 2: The number of darts ns scoring each possible value of s

where ps ≡ ns/N . In the limit of large N (a very long game), ps normally
becomes independent of N (assuming that the player does not get tired!).
This limiting value is called the probability that a dart scores s points.

Expected Values

The mean or expected score per dart, denoted 〈s〉, is given by

〈s〉 = lim
N→∞

sum of scores of all N darts

N
.

Since n0 darts scored 0, n1 scored 1, n2 scored 2, and so on, we have

sum of scores of all N darts =
∞∑

s=0

sns .

This enables us to re-express 〈s〉 in terms of probabilities:

〈s〉 = lim
N→∞

1

N

∞∑

s=0

sns =
∞∑

s=0

sps .

In other words,

〈s〉 = (0× Prob. of scoring 0) + (1× Prob. of scoring 1) + . . .

+ (s× Prob. of scoring s) + . . . .
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More generally, the mean or expected value of any function g(s) of the score
s is given by:

〈g(s)〉 = lim
N→∞

∑∞
s=0 g(s)ns
N

=
∞∑

s=0

g(s)ps .

For example, the expected value of s2,

〈s2〉 = lim
N→∞

∑∞
s=0 s

2ns
N

=
∞∑

s=0

s2ps .

Variance and Standard Deviation

Evaluating 〈s〉 tells us the mean score per dart but provides no information
about the spread of scores. We would also like to know the typical distance
of a point in Fig. 1 from the horizontal line s = 〈s〉 and the typical width of
the distribution in Fig. 2.

The simplest possible measure of spread or uncertainty, the expected value
of s− 〈s〉, is no good:

〈s− 〈s〉〉 =
∞∑

s=0

(s− 〈s〉)ps

=
∞∑

s=0

sps − 〈s〉
∞∑

s=0

ps

= 〈s〉 − 〈s〉 (remember that
∑∞
s=0 ps = 1)

= 0 .

Because s is equally likely to lie above or below 〈s〉, the positive and negative
contributions to the average cancel and 〈s− 〈s〉〉 is zero.

One way to avoid this cancellation would be to work out the expected value
of |s − 〈s〉|, but the modulus function is mathematically awkward because
the slope of |x| changes discontinuously as x passes through the origin. A
mathematically more convenient measure of the width of a probability dis-
tribution is the standard deviation σ, defined to be the (positive) square root
of the variance

σ2 =
〈
(s− 〈s〉)2

〉
.

In words: the variance σ2 is the expected value of the square of the distance
of the score s from the mean score 〈s〉; and the standard deviation σ is
the square root of the variance. The standard deviation is also called the

3



root mean square (rms) width of the probability distribution. Unlike the
variance, the standard deviation always has the same physical dimensions
as the random variable s. (Both σ and σ2 are dimensionless in our darts
example.)

Another useful formula for the variance is

σ2 = 〈s2〉 − 〈s〉2 .
This can be derived from the original definition as follows:

〈
(s− 〈s〉)2

〉
=

∞∑

s=0

(s− 〈s〉)2 ps

=
∞∑

s=0

(
s2 − 2〈s〉s+ 〈s〉2

)
ps

=
∞∑

s=0

s2ps − 2〈s〉
∞∑

s=0

sps + 〈s〉2
∞∑

s=0

ps

= 〈s2〉 − 2〈s〉〈s〉+ 〈s〉2

= 〈s2〉 − 〈s〉2 .

Probability Densities

Until now we have been considering quantities such as scores in a dart game
that can only take discrete (separate, quantised) values. A few small ad-
justments are required to apply the ideas of probability theory to continuous
variables such as the heights of people.

Instead of throwing N darts, imagine that you measure the heights of N
people. The probability that anybody in your sample is exactly 1.8 m tall is
zero. Some people may be roughly 1.8 m tall, and a few may be very close
to 1.8 m tall, but there is no chance of finding someone who is exactly 1.8 m
tall (plus or minus nothing).

We can, however, ask about the number of people n(h, h+ ∆h) with heights
between h and h+ ∆h, where ∆h is finite. Given a large enough sample, the
ratio n(h, h+∆h)/N is independent of N and we can define the corresponding
probability

p(h, h+ ∆h) = lim
N→∞

n(h, h+ ∆h)

N
,

just as in the discrete case.

If ∆h is small enough, the number of people with heights between h and
h + ∆h ought to be proportional to ∆h. (For example, one would expect
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the number of people with heights between 1.8000 m and 1.8002 m to be
roughly double the number with heights between 1.8000 m and 1.8001 m.)
This suggests defining a probability density function (pdf) f(h) via:

p(h, h+ ∆h) = f(h) ∆h .

As long as ∆h is small enough, f(h) should be independent of the value of
∆h. The pdf is the central quantity in all applications of probability theory
to continuous random variables.

f(h+  h)
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Figure 3: A probability density function

Figure 3 shows an example pdf. For small ∆h, the probability f(h)∆h that
the height of a randomly chosen person lies between h and h + ∆h is ap-
proximately equal to the shaded area. The probability that the height lies
between hlow and hhigh (where hlow and hhigh need not be close) is the area
under the pdf from hlow to hhigh:

p(hlow, hhigh) =
∫ hhigh

hlow

f(h) dh .

Since the probability that h lies somewhere between zero and infinity is equal
to 1, it follows that ∫ ∞

0
f(h) dh = 1 .

Expected Values

Following the darts example, the expected height 〈h〉 is defined via:

〈h〉 ≈ (0× Prob. height is between 0 and ∆h)
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+ (∆h× Prob. height is between ∆h and 2∆h)

+ . . .

+ (n∆h× Prob. height is between n∆h and (n+ 1)∆h)

+ . . .

≈
∞∑

n=0

n∆h f(n∆h) ∆h

=
∞∑

n=0

hnf(hn) ∆h ,

where hn ≡ n∆h is the value of the height h at the left-hand edge of the
nth strip of width ∆h. In the limit as ∆h→ 0, the summation turn into an
integral and the ≈ signs become = signs:

〈h〉 =
∫ ∞

0
hf(h) dh .

Just as in the discrete case, the expected value of any function g(h) of the
height h is defined via:

〈g(h)〉 =
∫ ∞

0
g(h)f(h) dh .

Variance and Standard Deviation

The variance σ2 is defined exactly as in the discrete case:

σ2 =
〈
(h− 〈h〉)2

〉
= 〈h2〉 − 〈h〉2 ,

but the expectation values are now given by integrals,

σ2 =
∫ ∞

0
(h− 〈h〉)2 f(h) dh =

∫ ∞

0
h2 f(h) dh−

(∫ ∞

0
h f(h) dh

)2

,

instead of summations. The standard deviation is still the square root of the
variance.
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