
Tuesday 10th May 2005

Quantum Physics Handout

Wavepackets and the Uncertainty Principle

Introduction

A wavepacket is any group of waves. It does not have to be neat and symmet-
rical and centred on the origin — all that matters is that it dies away to zero
far from some centre. Because a QM particle is represented by a wavepacket
of De Broglie waves, wavepackets play an important role in quantum physics.

The most interesting wavepackets have a clearly distinguishable “carrier”
wave, the amplitude of which is modulated by a much more slowly varying
envelope. The wavepacket in Figure 1 is of this type. If it were a sound, the
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Figure 1: A wavepacket with a clear carrier wave

pitch would be the frequency of the carrier wave and the envelope would give
the volume as a function of time.

Not all wavepackets are so simple. Figure 2 shows a messier one without a
clear carrier wave. A sound of this type would be a noise — a hand clap or
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Figure 2: A wavepacket without a clear carrier wave

a door closing — rather than a musical note with a clear pitch.

Recall that the formula

ψ(x, t) = a cos(kx− ωt+ φ)

describes a travelling wave of amplitude a, wavelength λ = 2π/k, frequency
ν = ω/2π, and phase shift φ. The angular frequency ω and wavevector k
are linked by the dispersion relation ω = ω(k). For light waves, for example,
ω = ck.

Wavepackets are not single travelling waves, but it is plausible (and true)
that they can always be written as superpositions of many travelling waves:

ψ(x, t) =

N∑

n=1

an cos(knx− ωnt+ φn) .

By choosing the wavevectors, amplitudes and phase shifts carefully, it is pos-
sible to ensure that the waves in the superposition undergo perfect destructive
interference (producing a total amplitude of zero) everywhere except in one
small region of space. The resulting ψ(x, t) is then a wavepacket.

(Strictly, it is not possible to construct a finite wavepacket using a fixed
number N of cosine waves. To ensure perfect destructive interference ev-
erywhere far away from the centre, it is necessary to let N tend to infinity
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and to replace the sum over wavevectors by an integral. We shall ignore this
mathematical issue.)

Although the idea that wavepackets can be constructed from cosine waves is
plausible enough, the prospect of having to work out all the amplitudes an
and phase shifts φn may appear forbidding. In fact, it turns out to be quite
easy, as you will learn when you study Fourier analysis at the beginning of
next year. (Incidentally, you already know all the mathematics you need to
understand Fourier analysis, so there is nothing to stop you looking it up in
a book if you are interested.)

Now that the idea of Fourier superposition has been introduced, the difference
between the wavepackets in Figures 1 and 2 can be described in mathematical
terms. In Figure 1 (the musical instrument), all the wavelengths λn = 2π/kn
appearing in the superposition are very close to the carrier wavelength. This
explains why the ear is able to pick out the carrier frequency and associate a
pitch with the sound. In Figure 2 (the hand clap), the wavelengths appearing
in the Fourier superposition are all over the place. Since they are no longer
clustered around a central carrier wavelength, the ear cannot pick out a clear
pitch.

The Uncertainty Principle

The idea of Fourier superposition has several interesting repercussions. Imag-
ine, for example, that you want to make a wavepacket that “sounds like”
middle C, the frequency of which is approximately 261 Hz. If the wavepacket
is to have a clearly distinguishable pitch, it has to be long enough to contain
many carrier-wave oscillations of this frequency. The exact number depends
on how cleverly the human brain interprets sounds, but 25 might be a rea-
sonable guess. Such a wavepacket takes about 25/261 s to pass by. Hence,
no noise significantly shorter than 0.1 seconds can possibly sound like mid-
dle C. Very short wavepackets have to contain a wide spread of component
frequencies/wavelengths (otherwise how could the interference between the
components change over such a short distance from constructive at the cen-
tre of the wavepacket to destructive everywhere else?) and so do not have a
clear pitch. This is why most percussion instruments, which make very short
sounds, have no discernible pitch.

Let us investigate some of the consequences of this idea. Suppose that a
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wavepacket is constructed using cosine waves with wavevectors in a narrow
range kc ± ∆k centred on the carrier wavevector kc. What is the minimum
possible size of such a wavepacket?

To work this out, start by considering two component waves of equal ampli-
tude which interfere constructively at position x = 0 at time t = 0:

ψ1(x, t) = cos(k1x− ω1t) , ψ2(x, t) = cos(k2x− ω2t) .

Figure 3 shows an example with k1 = 0.95 m−1 and k2 = 1.05 m−1. The
superposition ψ(x, t = 0) = ψ1(x, t = 0) + ψ2(x, t = 0) is also shown. The
short carrier wave and the slowly varying interference envelope of the beats
are clear.

How wide are the beats? At time t = 0, the first zero of the envelope
function occurs at the point marked by the dashed vertical line on Figure
3. The functions cos(k1x) and cos(k2x) are equal and opposite at this point,
and hence the phases k1x and k2x differ by π. This gives

k1x = k2x+ π ,

or, equivalently,

x = half-width of beat envelope =
π

|k1 − k2|
.

Now return to the full wavepacket, which contains huge numbers of com-
ponents with wavevectors between kc − ∆k and kc + ∆k. The details are
very complicated in this case, but the basic principle is the same: in or-
der to shift from the constructive interference that occurs at the centre of
the wavepacket to the perfect destructive interference that occurs everywhere
outside the wavepacket, the relative phases of the components have to change
by something close to π. The value of x that gives a phase difference of π
between the components with wavevectors kc −∆k and kc + ∆k satisfies

(kc + ∆k)x = (kc −∆k)x + π

and hence
x =

π

2∆k
.

The half-width of the wavepacket cannot be very much smaller than this, no
matter how cleverly the phases and amplitudes are chosen.
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Figure 3: Two cosine waves with similar wavelengths and their interference pat-
tern. The vertical dashed line marks the point where 1.05x = 0.95x + π.
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This reasoning may be rather imprecise (you might quibble about the def-
inition of ∆k or about factors of 2 or π), but the conclusion is simple and
correct: the half-width ∆x of the wavepacket is related to the half-width ∆k
of the spread of contributing wavevectors via

∆x∆k & π

2
.

Because of the qualitative nature of the derivation this inequality is not
strict, but a strict inequality can be derived and differs only in the value of
the constant on the right-hand side.

Since a wavepacket of size ∆x travelling at speed v takes time ∆x/v to pass
any point, a limit on the minimum size of the wavepacket is equivalent to a
limit on the minimum duration. This accords with the discussion of short
and long sounds at the beginning of this section.

Note that nothing has been said about the maximum size of the wavepacket.
It is always possible to choose the phase shifts and amplitudes of the com-
ponents such that they interfere constructively at any number of arbitrary
places, so the maximum size is unbounded.

In the case of quantum mechanics, where De Broglie’s equation says that the
momentum p is equal to ~k, the above inequality translates into Heisenberg’s
uncertainty principle:

∆x∆p & ~π
2
.

The strict mathematical version of the uncertainty principle, which I’ll be
using in the lectures, is rather weaker:

∆x∆p ≥ ~
2

Group Velocity

You should already know that the envelope of a “musical” wavepacket (that
is, a wavepacket containing a narrow range of k vectors centred on the carrier
wavevector kc) travels at the group velocity. To help understand this result,
let us return to the two-wave example discussed above.
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Two-Wave Example

As t increases, the two travelling cosine waves ψ1 and ψ2 move to the right at
the phase velocity ω/k. For light waves, the angular frequencies ω1 and ω2

are related to the wavevectors k1 and k2 via the dispersion relation ω = ck.
The phase velocities

v1 =
ω1

k1

=
ck1

k1

= c

and

v2 =
ω2

k2
=

ck2

k2
= c

are therefore both equal to c. Since the interference pattern of beats is just
the sum of ψ1 and ψ2, both of which are moving at speed c, it too moves
to the right at speed c. Apart from this constant motion, the shape of the
interference pattern never changes.

For other kinds of waves, the dispersion relation is more complicated and v1

and v2 may differ. This makes it much harder to figure out how the interfer-
ence pattern of beats moves and changes with time. In fact, the beat pattern
moves at the group velocity dω/dk rather than the phase velocity ω/k. For
light waves, dω/dk = ω/k = c and so the group and phase velocities are
the same. For De Broglie particle-waves, which have the dispersion relation
ω = ~k2/2m, the group velocity

dω

dk
=
~k
m

is twice the phase velocity
ω

k
=
~k
2m

.

This means that the beat pattern, created by the interference of the two
cosine waves, moves twice as fast as the waves themselves.

To see why the interference pattern moves at the group velocity, consider the
regions where the two components of

ψ(x, t) = cos(k1x− ω1t) + cos(k2x− ωt)
interfere constructively. This happens where the arguments k1x − ω1t and
k2x− ω2t of the two cosine functions differ by a multiple of 2π:

k1x− ω1t = k2x− ω2t+ 2πn (n any integer) .
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Figure 4: The slope (ω2 − ω1)/(k2 − k1) of the (almost invisible) dashed line is
approximately the same as the slope dω/dk of the function ω(k).

For the n = 0 peak, the condition for constructive interference reduces to:

(k2 − k1)x = (ω2 − ω1)t .

When t = 0, the solution of this equation is x = 0 (in other words, the n = 0
peak is the broad peak in the middle of the lower panel in Figure 3). When
t > 0, the position of the n = 0 peak is given by:

x =
ω2 − ω1

k2 − k1
t =

∆ω

∆k
t .

The central peak of the interference pattern therefore moves at speed ∆ω/∆k.

If the wavelengths (and hence wavevectors and angular frequencies) of the
two component waves are similar enough, the fraction ∆ω/∆k is approxi-
mately equal to the derivative dω/dk (see Figure 4). The interference pattern
therefore moves at the group velocity:

vg(k) =
dω

dk
.

Since ∆k is assumed to be very small, it makes little difference whether the
group velocity is evaluated at k1 or k2: vg(k1) ≈ vg(k2) ≈ vg((k1 + k2)/2).
For aesthetic reasons, I prefer to use the average wavevector (k1 + k2)/2.

8



If the wavelengths of the two component waves differ by too much, the ap-
proximation ∆ω/∆k ≈ dω/dk may be poor. In this case, the velocity ∆ω/∆k
of the interference envelope will not be the same as the group velocity dω/dk.

General Case

Now consider a general wavepacket constructed by superposing many cosine
waves. If the wavepacket is a “musical” one — in other words, if all the waves
contributing to the superposition have similar wavelengths — it is possible
to show that the interference envelope moves at the group velocity.

The proof uses the complex representation of a travelling wave introduced
earlier in the course:

ψ(x, t) = a cos(kx− ωt+ φ) = Re
(
Aei(kx−ωt)

)
,

where the constant A = aeiφ is known as the complex amplitude. The
complex representation of a wavepacket consisting of many travelling waves
is:

ψ(x, t) =
N∑

n=1

Ane
i(knx−ωnt) ,

where, as usual, the “Re” symbol has been omitted.

Since the wavepacket is musical, the wavevectors kn are all very close to the
carrier wavevector kc:

kn = kc + ∆kn ,

where ∆kn is small. The angular frequency ωn = ω(kn) may therefore be
approximated using the first two terms of a Taylor series:

ωn = ω(kc + ∆kn) ≈ ω(kc) +
dω

dk

∣∣∣∣
k=kc

∆kn = ωc + vg∆kn ,

where vg = dω/dk|k=kc
. The expression for ψ(x, t) then becomes:

ψ(x, t) ≈
N∑

n=1

Ane
i[(kc+∆kn)x−(ωc+vg∆kn)t]

=
N∑

n=1

Ane
i(kcx−ωct)+i∆kn(x−vgt)
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= ei(kcx−ωct)
N∑

n=1

Ane
i∆kn(x−vgt) .

The exponential prefactor is the carrier wave with wavelength λc = 2π/kc,
while the summation gives the shape of the envelope. The important point
is that the envelope is a function of x− vgt only:

ψ(x, t) ≈ ei(kcx−ωct)f(x− vgt) .

This means that the envelope has the same shape [the shape of f(x)] at all
times. As t increases, this frozen shape simply moves to the right at speed
vg.

The only approximation in the above derivation was the replacement of ωn
by the first two terms of a Taylor series. This approximation is exact if
the dispersion relation is linear (ω = ck, as for light) and good whenever the
dispersion relation is close to linear over the range of wavevectors contributing
to the wavepacket. If the dispersion relation is not quite linear, however, the
neglected higher-order terms cause the wavepacket to smear out gradually as
it moves along. The wider the spread of wavelengths in the wavepacket, the
more rapidly this smearing (called dispersion) occurs.
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