
Quantum Physics Answer Sheet 2

Compton Scattering

1. (i) The wavelength of the incident photons is

λ =
hc

E
≈ 6.63 × 10−34 × 3.00 × 108

20 × 103 × 1.60 × 10−19
≈ 6.22 × 10−11 m .

The change in wavelength is given by the Compton formula with θ = 60o:

λ′ − λ =
h

mc
(1 − cos θ) ≈ 6.63 × 10−34 × 0.5

9.11 × 10−31 × 3.00 × 108
≈ 1.21 × 10−12 m .

Combining the values of λ and λ′ − λ gives the wavelength of the scattered photons:

λ′ ≈ 6.34 × 10−11 m .

(ii) The energy lost by a photon as it scatters is:

E − E ′ = hc
(

1

λ
− 1

λ′

)

= 6.63 × 10−34 × 3.00 × 108
(

1

6.22 × 10−11
− 1

6.34 × 10−11

)

≈ 6.05 × 10−17 J

≈ 378 eV .

Warning: this answer is the difference of two much larger numbers (the incoming and
outgoing photon energies) and is subject to considerable rounding error. For example, if
you store intermediate values such as λ and λ′ to full calculator precision, the final result
changes by several eV. Short of using more accurate values for the fundamental constants,
there is little that can be done about this.

All this energy is transferred to the electron as recoil energy. The work function of a
typical solid is only 5 or 10 eV, so some of the recoiling electrons will certainly escape
from the metal.

The largest change in wavelength would be obtained when θ = 1800, in which case λ′−λ =
2h/mc ≈ 4.85 × 10−12 m. The maximum possible wavelength of the scattered photon
(assuming only one scattering) is 6.22 × 10−11 + 4.85 × 10−12 ≈ 6.71 × 10−11 m.

2. (i) The initial photon wavelength is

λinit =
hc

E
≈ 6.63 × 10−34 × 3.00 × 108

106 × 1.60 × 10−19
≈ 1.24 × 10−12 m .
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The final photon wavelength after 1026 Compton scattering events is 500 nm. If
we assume that each scattering event increases the photon wavelength by the same
amount ∆λ, we obtain

1026∆λ ≈ (500 × 10−9 − 1.24 × 10−12) m ,

and hence
∆λ ≈ 5 × 10−33 m .

(ii) The Compton formula says that

∆λ =
h

mc
(1 − cos θ) .

Since ∆λ (≈ 5 × 10−33 m) � h/mc (≈ 2.43 × 10−12 m), the average scattering angle
θ must be very small (so that cos θ is very close to 1). We can therefore make the
approximation cos θ ≈ 1 − θ2/2 to obtain ∆λ ≈ hθ2/2mc, and hence

θ ≈
√

2mc∆λ

h

≈
√

2 × 9.11 × 10−31 × 3.00 × 108 × 5 × 10−33

6.63 × 10−34

≈ 6.42 × 10−11 radians

≈ 3.68 × 10−9 degrees .

(iii) In 106 years, a photon travels a distance:

d = ct = 3.00 × 108 × 60 × 60 × 24 × 365 × 106

≈ 9.46 × 1021 m .

During this time, it scatters 1026 times. Hence, the average distance travelled by
a photon between scattering events is 9.46 × 1021/1026 ≈ 9.46 × 10−5 m or roughly
0.1 mm.

De Broglie Waves

3. In order to use neutron diffraction to study atomic positions and atomic-scale magnetic
fields, the neutron De Broglie wavelength must be comparable to the size of an atom:

λ ≈ 10−10 m .

The kinetic energy of the neutron is thus:

1

2
mv2 =

p2

2m
=

h2

2mλ2
≈ (6.63 × 10−34)2

2 × 1.67 × 10−27 × 10−20

≈ 1.32 × 10−20 J ≈ 0.083 eV .

2



This is the same as the average energy 3kBT/2 of a neutron in thermal equilibrium at
temperature

T ≈ 2 × 1.32 × 10−20

3 × 1.38 × 10−23
≈ 640 K .

4. The De Broglie wavelength of a 100 eV electron is given by:

100 eV =
p2

2m
=

h2

2mλ2
,

and hence

λ =
6.63 × 10−34

√
2 × 9.11 × 10−31 × 100 × 1.60 × 10−19

≈ 1.23 × 10−10 m .

w/2

d θ
l

From Q8 of Problem Sheet 1, the first zero in the diffraction pattern from a slit of width
d occurs where sin θ = λ/d. Hence,

θ = sin−1(λ/d) ≈ sin−1(1.23 × 10−10/10−6) ≈ 1.23 × 10−4 radians .

The width w of the central diffraction peak is 2l tan θ, where l = 1 m is the distance from
the slit to the screen. Hence,

w = 2 × 1 × tan θ ≈ 2θ ≈ 2.46 × 10−4 m .

5. A particle of mass m and momentum p has kinetic energy p2/2m. If the kinetic energy is
equal to 3kBT/2:

p2

2m
=

3kBT

2
,

then
p =

√
3mkBT .

Combining this result with De Broglie’s equation, p = h/λ, gives:

λ =
h

p
=

h√
3mkBT

,

as required.
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Avogadro’s number of He atoms occupy a volume of 27.6 × 10−6 m3. Hence, the volume
per atom d3 is

27.6 × 10−6

6.02 × 1023
≈ 4.58 × 10−29 m3 .

Taking the cube root, we obtain d ≈ 3.58 × 10−10 m.

To find the temperature T at which λ = d, we have to solve the equation

h√
3mkBT

= d .

Hence

T =
1

3mkB

(
h

d

)2

≈ 1

3 × 4 × 1.66 × 10−27 × 1.38 × 10−23

(
6.63 × 10−34

3.58 × 10−10

)2

≈ 12.5 K .

When the temperature is comparable to or smaller than this value, the De Broglie wave-
length of the He atoms will be the same as or greater than the interparticle spacing, and
the wave-like properties of the atoms will be important.

6. The figure below shows that in order for the De Broglie wave of wavelength λ to “fit in” to
the box, the box side d must be an integer multiple of λ/2: d = nλ/2, where n = 1, 2, . . .

λ/2d = 2λ/2 d = 

d

The maximum possible De Broglie wavelength is therefore 2d. The smallest possible
momentum is

pmin =
h

λmax
=

h

2d
≈ 6.63 × 10−34

2 × 3.58 × 10−10
≈ 9.26 × 10−25 kg ms−1 .

The smallest possible KE is

KEmin =
p2

min

2m
≈ (9.26 × 10−25)2

2 × 4 × 1.66 × 10−27
≈ 6.46 × 10−23 J .

The thermal KE of 3kBT/2 would equal KEmin when

T =
2 KEmin

3kB

≈ 2 × 6.46 × 10−23

3 × 1.38 × 10−23
≈ 3.12 K .
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