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1. (i) The fundamental predictions of quantum mechanics are the probabilities of ob-
taining any particular result from a measurement of a dynamical variable. Show
that the probabilities are not affected by multiplying the wavefunction ψ by any
phase factor e

iα, where α is a real number which is not a function of x.
[4 marks]

(ii) Write down the time independent Schrödinger equation for a particle of mass m

moving in one dimension in a potential V (x). Consider the potential described
by

V (x) = 0 : 0 ≤ x ≤ a,
V (x) = ∞ : x < 0 or x > a.

Solve the Schrödinger equation for this potential and show that the energy
eigenstates un(x) have energy eigenvalues given by

En =
n

2π2�2

2ma2 ,

where n is a positive integer. [6 marks]

(iii) Consider a particle in the ground state, so at t = 0 its wavefunction is

ψ(x, t = 0) = u1(x).

Write down the time dependence of this wavefunction and explain why this is
called a “stationary state”. [3 marks]

(iv) Consider a particle with a wavefunction at t = 0 given by

ψ(x, t = 0) =
1√
2

[u1(x) + u2(x)] .

Calculate an expression for the first later time at which the wavefunction is phys-
ically equivalent to the wavefunction at t = 0. [5 marks]

(v) If the potential in the region 0 ≤ x ≤ a was V = K for some non-zero constant K ,
rather than V = 0, explain how the answers to parts (iii) and (iv) would change.
Is such a potential shift observable? [2 marks]

[Total 20 marks]
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2. The ground state energy eigenfunction of a one dimensional harmonic oscillator cen-
tred on x = 0 is given by

u0 = Ae
−αx

2/2,

where α is a constant, and A is a normalisation constant which can be taken to be
real and positive.

(i) The first excited state energy eigenfunction is given by

u1 = Bxe
−αx

2/2,

where B is a normalisation constant. Show that these two eigenfunctions are
orthogonal. [2 marks]

(ii) Normalise u0. [3 marks]

(iii) Calculate the following quantities for the state u0:

(a) The expectation value of the position of the particle. Briefly give a physical
justification for your answer. [2 marks]

(b) The expectation value of the momentum of the particle. Briefly give a phys-
ical justification for your answer. [2 marks]

(c) The root mean squared (rms) uncertainty in the position of the particle.
[4 marks]

(d) The rms uncertainty in the momentum of the particle. Hint: the momentum
operator is Hermitian. [4 marks]

(iv) Show that the ground state of the system is a “minimum uncertainty state”.
[3 marks]

[Total 20 marks]

Standard integrals:

� ∞

−∞
e
−y

2
dy =

√
π,

� ∞

−∞
y

2
e
−y

2
dy =

√
π/2.
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3. A particle of mass m is confined by a one dimensional harmonic oscillator potential
corresponding to a classical angular frequency ω.

(i) Write down the quantum mechanical Hamiltonian in terms of x̂ and p̂, the oper-
ators corresponding to position and momentum and show that it can be written
in the form

Ĥ = �ω(α2
x̂

2 + β2
p̂

2),

where α2 = mω/2� and β2 = 1/2mω�. [3 marks]

(ii) By defining new operators

â = αx̂ + iβp̂,
â
† = αx̂ − iβp̂,

and given that [x̂, p̂] = i�, calculate expressions for ââ
† and â

†
â and hence show

that

[â, â
†] = 1.

[6 marks]

(iii) By expressing Ĥ in terms of the combination â
†
â, show that the commutator of

Ĥ and â is
[Ĥ, â] = −�ωâ,

Hence, show that the action of the operator â on un is to convert it to another
eigenstate (âun) of energy lower than that of un by an amount �ω. [6 marks]

(iv) What must be the result of operating with â on the ground state u0? Use this to
determine the ground state energy eigenvalue E0. [2 marks]

(v) Use the equation of part (iv) for âu0 to determine the (unnormalised) functional
form of u0(x). [3 marks]

[Total 20 marks]
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4. A spinless particle of mass m is bound in a central potential V (r). Energy eigenfunc-
tions have the form

unlml
= Rn l(r)Yl ml

(θ, φ).

The radial dependence is given by solutions to the equation
�
− �

2

2m

d
2

dr2 +
l(l + 1)�2

2mr2 + V (r)
�

Gn l(r) = EGn l(r),

where Gn l(r) = rRn l(r), E is the energy and l is the total angular momentum squared
quantum number.

A spherically symmetric infinite well has a potential

V (r) = 0 for r ≤ a,
= ∞ for r > a.

(i) Rn l(r) must be finite at r = 0 and zero for r > a. Use this to write down the
boundary conditions for Gn l(r) at r = 0 and r = a. [2 marks]

(ii) By direct substitution (or otherwise) show that in the absence of angular mo-
mentum, the solutions of Gn 0 have the form

Gn 0 = A sin kr ,

where A is a normalisation constant. Find the allowed values of k and hence
determine the lowest energy which has zero angular momentum. [6 marks]

(iii) By direct substitution (or otherwise) show that for l = 1, the solutions of Gn 1

have the form

Gn 1 = B

�
sin k

�
r

r
− k

� cos k
�
r

�
,

where B is a normalisation constant. [7 marks]

(iv) By considering the r → 0 limit, show that Gn 1 satisfies the boundary condition
at r = 0. Use the boundary condition at r = a to show that k

� must satisfy

tan k
�
a = k

�
a.

[3 marks]

(v) By sketching the functions in part (iv) or otherwise, deduce whether the lowest
energy solution for l = 1 is lower than, the same as, or greater than the lowest
energy solution for l = 0. Explain your reasoning. [2 marks]

[Total 20 marks]
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5. (i) A quantum rigid rotor with a moment of inertia I, constrained to rotate in the xy

plane, has a Hamiltonian operator

Ĥ = −�
2

2I

∂2

∂φ2

where φ is the xy plane polar angle to the x axis. Physically justify this expres-
sion, given that the angular momentum operator for rotations in the xy plane is
L = −i� ∂/∂φ [3 marks]

(ii) Considering just the φ dependence, show by substitution that the energy eigen-
states can be written in the form

u(φ) = Ne
imφ.

Find a suitable value for the normalisation constant N and give an expression for
the energy eigenvalues, paying attention to the requirement for the wavefunction
to be physical. [6 marks]

(iii) State the level of degeneracy of these energy eigenstates. Explain how L can
be used to label the states uniquely. [4 marks]

(iv) Consider a rotor with a normalised wavefunction

ψ(φ) =
1√
3π

(1 + cos φ) .

Find the possible results of an energy measurement and evaluate the probability
of getting each possible value. [7 marks]

[Total 20 marks]
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6. (i) Describe the use of Hermitian operators in quantum mechanics and explain why
it is important that they are Hermitian. [4 marks]

(ii) In quantum mechanics, particles have an intrinsic quantity called spin; for exam-
ple electrons are “spin 1/2” particles and photons are “spin 1” particles. When
handling spin variables, the spin operators are represented using matrices. De-
fine what is meant by an Hermitian matrix. Hence, for a general Hermitian
matrix, written figuratively as




a b c ...
d e ... ...
f

... . . .
...

... . . .




,

write down a condition for the diagonal elements, e.g. a or e, and derive a
relation between the opposite off-diagonal elements, e.g. b and d, or c and
f . [3 marks]

(iii) Consider the three matrices

A = �




0 i 0
−i 0 0
0 0 0


 , B = �




0 0 −i

0 0 0
i 0 0


 , C = �




0 0 0
0 0 i

0 −i 0


 .

(a) Find the eigenvalues of A . [3 marks]
(b) Find the commutator [A , B]. [2 marks]
(c) Calculate A

2 and by analogy write down B
2 and C

2. Hence calculate the
matrix A

2 + B
2 + C

2. [2 marks]
(d) Explain why A , B and C have the correct properties to act as appropriate

matrices to represent operators for spin components. [3 marks]
(e) State the total spin value that these matrices would correspond to. Give

TWO justifications for your answer. [3 marks]

[Total 20 marks]
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