
Mechanics M. Coppins
First Year Physics 7.12.07

Problem Sheet 8: Lectures 4.4–5.1

Exercises

1. At the end of their lives stars somewhat larger than our Sun can collapse to form an
ultra-high density neutron star. Consider such a star which before the collapse had a
radius of 8.8× 105 km, and a rotation period of 25 days. Calculate its rotation period
if it collapses to form a neutron star of radius 20 km. You may assume that both the
original star and the neutron star are uniform spheres.

2. (i) Consider an object on the surface of a spherical planet. The planet has mass M
and radius R. If the object has enough kinetic energy it can completely escape
from the planet’s gravity (i.e., reach r = ∞). The minimum speed which the
object must have to achieve this is called the escape velocity. Show that it is
given by ves =

√
2GM/R.

(ii) What is the escape velocity from the Earth?

(iii) What is the escape velocity of the Earth from the Sun?

[Mass of the Earth = 5.98× 1024 kg.

Mass of the Sun = 1.99× 1030 kg.

Radius of the Earth = 6.37× 106 m.

Mean radius of the Earth’s orbit about the Sun = 1.49× 1011 m.]

3. The centre of mass of a flat object can be determined by pivoting it about one point,
allowing it to come to rest, drawing a vertical line on it through the pivot, pivoting it
from another point, and drawing a second vertical line. The centre of mass is located
at the intersection of the lines. Why does this method work?

4. The gravitational potential energy of a particle of mass m outside a spherically symmet-

ric mass distribution (total mass M) and distance r from its centre is U = −GmM

r
.

Use the equation F = −dU

dr
r̂ to show that the gravitational force on the particle is

identical to the force that would be exerted on it by a point mass M at the centre of
the sphere.

Problems

5. When a spinning ice-skater pulls in his arms he spins faster. This is a manifestation
of the conservation of angular momentum. We can get some insight into this effect by
analyzing a simpler system, consisting of a two point masses, each of mass m, held some
distance apart by a massless rod, and spinning about an axis through the mid-point
of the rod with an angular speed ω.

(i) Assuming that the separation of the masses is l, show that the total angular

momentum of the system is L =
ml2ω

2
and its total kinetic energy is K =

ml2ω2

4
.
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(ii) Each mass experiences a centripetal acceleration as it moves in a circle around
the axis. The centripetal force is due to the tension in the massless rod. Show

that the centripetal force on one mass is Fc =
2L2

ml3
, where L is the total angular

momentum of the two-mass system.

(iii) The separation is reduced from l0 to l1. The angular momentum L is constant in
this process. Show that the change in kinetic energy is

∆K =
L2

m

(
1

l21
− 1

l20

)
.

Does the kinetic energy increase or decrease?

(iv) The work done by a radially inward force of magnitude F on a particle whose

distance from the origin changes from r0 to r1, is given by W = −
∫ r1

r0

Fdr. Find

an expression for the work done on each mass by the centripetal force while the
separation is being reduced, and, hence, show that the work-energy theorem is
satisfied.

6. In Lecture 4.4 we found that a spinning gyroscope precesses. At any instant the
flywheel experiences a torque τ , the direction of which lies in the x-y (horizontal)
plane (see figure, below) .

(i) Show that in a short time ∆t the gyroscope precesses through an angle in the x-y
plane given by:

∆θ =
τδt

Iω

where I is the moment of inertia of the flywheel about its centre of mass, and ω
is its angular speed about the axis through the centre of mass. Hence show that
the precessional angular speed is given by:

Ω =
dθ

dt
=

rMg

Iω

where M is the mass of the flywheel, and r is the distance of the its centre of
mass from the pivot.

(ii) The flywheel will gradually slow down due to friction. What effect will this have
on the precession?



7. (i) Consider a uniform spherical shell of mass ms. The figure (below) shows a ring
on this shell, the points of which are all distance s from point P, which itself is
distance r from the centre of the shell. Show that the surface area of the ring is
dA = 2πR2 sin θdθ, where dθ is the angle subtended by the width of the ring at
the centre of the sphere.

(ii) Show that s2 = r2 − 2rR cos θ + R2 and, hence, by differentiating this equation,

that sin θdθ =
sds

rR
.

(iii) Since the spherical shell is uniform the ratio of the mass of the ring, dm, to the
mass of the whole shell, ms, is just equal to the ratio of their areas. Show that

dm =
mssds

2rR
.

[This equation was used in Lecture 5.1.]

8. Consider a mass m inside a uniform spherical shell, distance r from its centre. The
mass of the shell is ms and its radius is R. The potential energy can again be found
by summing over contributions from rings on the shell. For any one ring we find

dU = −Gmmsds

2rR
, just as we did when the mass was outside the shell (Lecture 5.1).

In fact, the only difference from the latter situation is in the choice of limits when
integrating over s. Determine the appropriate limits, and show that the potential
energy is

U = −Gmms

R
.

What does this tell us about the gravitational force inside a hollow sphere?

Numerical Answers

1. 1.11× 10−3 s.

2. (ii) 1.12× 104 m s−1, (iii) 4.22× 104 m s−1.


