Problem Sheet 3: Lectures 2.5 and 2.6

Exercises

1. A ball of mass 0.2 kg and initial velocity $5.0 \mathrm{~m} \mathrm{~s}^{-1}$ in the $+x$ direction has a onedimensional elestic collision with a ball of mass 0.3 kg which is also moving in the $+x$ direction, but at $2.0 \mathrm{~m} \mathrm{~s}^{-1}$. Find the velocities of the two balls after the collision.
2. (i) In Lecture 2.5 we showed that if the mass and velocity of a rocket + its unburnt fuel change by $d m$ and $d v$ (where $d m<0$), then the total momentum change is $d p=m d v+v_{e} d m$, where v_{e} is the exhaust velocity (the speed of the burnt fuel relative to the rocket). Show that if there is an external force F opposing the motion then the acceleration of the rocket is given by

$$
\frac{d v}{d t}=\frac{\left(F_{T}-F\right)}{m}
$$

where $F_{T}=$ thrust $=-v_{e} \frac{d m}{d t}$. [Note: $d m / d t=$ rate at which fuel is used up <0.]
(ii) Launch from the surface of the Earth requires an upward thrust which exceeds the downward weight of the rocket + fuel. A fully fuelled Saturn V rocket has a mass of $3.04 \times 10^{6} \mathrm{~kg}$ and an exhaust velocity of $2.65 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$. Calculate the minimum value of $|d m / d t|$ needed to get it off the ground.
3. An object of mass 0.5 kg , initially at rest, is pushed with a constant horizontal force of 2.0 N across a horizontal surface. The coefficient of kinetic friction between the object and the surface is 0.3 . Calculate:
(i) the distance moved in 1 s ,
(ii) the work done on the object by the person pushing, in 1 s ,
(iii) the work done on the object by friction, in 1 s ,
(iv) the objects kinetic energy after 1 s ,
(v) the average power supplied by the person pushing, over the 1 s interval, and
(vi) the average power supplied by friction, over the 1 s interval.
4. A 5 kg block is pushed with a force of 30 N in the $+x$ direction. It is on a surface for which $\mu_{s}=0.7$ and $\mu_{k}=0.5$.
(i) What are the forces on the block if it is at rest?
(ii) What is the acceleration of the block if it is moving?

Problems

5. Two particles (masses m_{A} and m_{B}) have a 1-D eleastic collision. Before the collision their velocities are u_{A} and u_{B}. Show that their velocities after the collision are

$$
\begin{aligned}
& v_{A}=\frac{\left(m_{A}-m_{B}\right) u_{A}+2 m_{B} u_{B}}{m_{A}+m_{B}} \\
& v_{B}=\frac{\left(m_{B}-m_{A}\right) u_{B}+2 m_{A} u_{A}}{m_{A}+m_{B}} .
\end{aligned}
$$

6. A completely inelastic collision is one in which the two objects stick together after the collision. In such a collision the total kinetic energy decreases. Consider a completely inelastic collision between two particles (masses m_{A} and m_{B}) moving with velocities u_{A} and u_{B} before the collision. Show that the change in total kinetic energy can be written

$$
\Delta K=-\frac{1}{2} \mu U^{2}
$$

where $\mu=\frac{m_{A} m_{B}}{m_{A}+m_{B}}$ and $U=u_{A}-u_{B}$.
Where does the kinetic energy go?
7. An interesting variant on Newton's cradle has three balls. Numbers 1 and 2 have mass m, but number 3 has mass $2 m$. Initially numbers 2 and 3 are at rest. Number 1 is released and hits number 2 with a velocity of $1 \mathrm{~m} \mathrm{~s}^{-1}$. Ignoring losses due to friction and air resistance and assuming all collisions are elastic what are the velocities of the three balls a very short time after the first impact?

8. (i) The drag force which opposes motion through a fluid can be written $D=k_{d} v^{n}$ where $n=1$ for low speeds and 2 for high speeds. Show that the terminal velocity of an object of mass m is $v_{t}=\left(m g / k_{d}\right)^{1 / n}$.
(ii) An 80 kg person falling through the air in a spread-eagle position has $D \propto v^{2}$ and $k_{d}=0.25 \mathrm{~kg} \mathrm{~m}^{-1}$. Calculate their terminal velocity.
(iii) With a parachute the 80 kg person's terminal velocity falls to $5.0 \mathrm{~m} \mathrm{~s}^{-1}$. Assuming $D \propto v$ in this case, calculate the new value of k_{d}.
(iv) At high speeds the drag force can be written $D=C_{d} \rho_{f} A v^{2} / 2$, where C_{d} is a dimensionless number called the drag coefficient, ρ_{f} is the density of the fluid, and A is the cross-sectional area of the moving object perpendicular to its motion. Show that the terminal velocity of a falling sphere of radius a is proportional to \sqrt{a}, and use the following data to calculate the terminal velocity of a steel sphere of radius 2.0 cm falling in air.
[Density of air $=1.25 \mathrm{~kg} \mathrm{~m}^{-3}$.
Density of steel $=7.85 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$.
Drag coefficient for a smooth sphere $=0.5$.]

Numerical Answers

1. $1.4 \mathrm{~m} \mathrm{~s}^{-1}, 4.4 \mathrm{~m} \mathrm{~s}^{-1}$
2. (ii) $1.13 \times 10^{4} \mathrm{~kg} \mathrm{~s}^{-1}$
3. (i) 0.53 m , (ii) 1.06 J , (iii) -0.78 J, (iv) 0.28 J , (v) 1.06 W , (vi) -0.78 W
4. (i) 49.0 N downwards, 49.0 N upwards, 30 N in $+x$ direction, 30 N in $-x$ direction.
(ii) $1.09 \mathrm{~m} \mathrm{~s}^{-2}$ in $+x$ direction.
5. $v_{1}=-0.333 \mathrm{~m} \mathrm{~s}^{-1}, v_{2}=0, v_{3}=0.667 \mathrm{~m} \mathrm{~s}^{-1}$
6. (ii) $56.0 \mathrm{~m} \mathrm{~s}^{-1}$, (iii) $157 \mathrm{~kg} \mathrm{~s}^{-1}$, (iv) $81.1 \mathrm{~m} \mathrm{~s}^{-1}$
