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Supplementary Problem Sheet

Newton’s demonstration that the motion of the planets is a direct consequence of the nature
of the gravitational force was one of the turning points in the history of science. Anyone
studying classical mechanics can reasonably expect to encounter a proof that Kepler’s laws
do indeed follow from assuming an attractive, central gravitational force proportional to r−2.
The questions on this Supplementary Problem Sheet lead you through the derivation.

You should regard this problem sheet as an optional extra. The questions involve equa-
tions for ellipses which lie outside the regular course. I would not set a question like this on
the exam.

We do not follow Newton’s method here. Instead we assume the planet follows an el-
liptical orbit and show that this assumption is consistent with the conservation of angular
momentum and energy, which were basic properties of the gravitational force. We also find
equations for these conserved quantities in terms of the characteristic parameters of the
orbit, and then use this information to derive Kepler’s third law.

1. The equation of an ellipse (with one focus at the origin) in polar coordinates can be
written

r =
α

(1− e cos θ)

where α = b2/a, a and b are the semi-major and semi-minor axes respectively, and e
is the eccentricity (Handout 4, Eq. 7). Show that the radial component of the velocity
of a particle following an elliptical orbit (i.e., a planet), with the origin at one focus, is

vr = − αe sin θ

(1− e cos θ)2

dθ

dt

2. We now make use of the fact that L = angular momentum = constant in a gravitational
orbit. Show that

dθ

dt
=

L(1− e cos θ)2

mα2
,

and, hence, that

vr = −Le sin θ

mα2
.

3. Use the polar equation of the ellipse, given in Q. 1, to show that at any point on the

ellipse: e2 sin2 θ = e2 − 1 +
2α

r
− α2

r2
. [Hint: remember that sin2 θ = 1− cos2 θ.]
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4. Using the equation e2 = 1− b2/a2 (Handout 4, Eq. 5), the equation found in the pre-
vious part, and the equation for vr found in Q. 2, show that

v2
r =

L2

m2

(
− b2

α2a2
+

2

αr
− 1

r2

)
and, hence that the total kinetic energy can be written

K = − L2

2mb2
+

L2a

mb2r
.

[Hint: use the definition of α given in Q. 1.]

5. We now use the fact that the total energy of the particle is constant, and that its

potential energy is U = −GMm

r
, where M is the mass of the object about which the

particle is orbitting (i.e., the Sun). Thus the kinetic energy of the particle must have
the form

K = E − U = E +
GMm

r

where E = constant. The expression for K obtained in the previous part has the cor-
rect functional form (a constant + a term proportional to r−1). This indicates that our
assumption of an elliptical orbit was consistent with Newton’s law of universal gravi-
tation (from which we obtained conservation of angular momentum and the equation
for U), thus confirming Kepler’s first law. Show that

L = mb

√
GM

a
and |E| = GMm

2a
.

6. In Lecture 5.2 we showed that the rate at which area is swept out by a planet is
dA

dt
=

L

2m
= constant (this is Kepler’s second law). Given that the area of an ellipse

is πab (Handout 4, Eq. 8), show that the period of the orbit is T = 2πmab/L, and,
using the equation for L obtained in the previous part, show that

T =
2π√
GM

a3/2

i.e., the period of the orbit is proportional to a3/2, where the constant of proportionality
is the same for all planets (it depends only on M = mass of the Sun). This is Kepler’s
third law.


