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2.2 Simple Harmonic Motion
2.2.1 Springs
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By ignoring the springs mass and gravity, the spring can be defined as oscillating under simple harmonic motion.

By defining

l
= Length of the spring

l0
= Natural length of the spring

A force tends to restore a spring to its natural length.


If the spring is stretched l>l0


If the spring is compressed l<l0
If the spring is in equilibrium l=l0
We can define the equilibrium position of the mass as the origin

We can define the displacement from the equilibrium position (the spring extension)  as x = l – l0
Then when:

x > 0, Force is in the –x direction.

x < 0, Force is in the x direction

x = 0, Force is 0

2.2.2 Hooke’s Law
2.2.2.1 For Small Displacements F = - kx

(Origin of Hooke’s Law 2.4.3)

The minus sign indicates the force is in the opposite direction to the displacement.

k is the spring constant.

For large displacements this relationship is not true, i.e. the spring is permanently deformed beyond its elastic limit.

2.2.3 Equations Of Motion

v = Velocity Of Mass

= 
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a = Acceleration Of Mass
= 
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Combing N2 and 2.2.2.1
gives ma = - kx

2.2.3.1
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This is a second order differential equation, so by applying the boundary conditions:

x(t=0) = x0
v(t=0) = 0

The solution to 2.2.3.1 with the boundary conditions is
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Substituting into 2.2.3.1
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2.2.3.3
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The oscillation of this spring is periodic, repeating every T, hence 
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, this implies 
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2.2.3.4
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2.2.3.5 Angular frequency = 
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f = Frequency = Number of Cycles per Second = 
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2.2.3.6
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2.2.4 Kinetic Energy & Work

As 
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And 
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Combining then implementing 2.2.3.3:
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2.2.4.1
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As the mass moves through a small displacement dx, a small increment of work is done:
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Where W = Work Done up to time t
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Substituting into 2.2.3.2 gives:
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Which is the same as 2.2.4.1

This shows that Work Energy Theorem is correct (2.1.4.3)

2.2.5 Simple Harmonic Motion Equations
2.2.5.1
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Where s is “some varriable”.

The solution to this equation is a function of sine or cosine of 
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(Justification 1st Year Vibrations and Waves)
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