Foundation Maths for
First Year Physics
M. Coppins
21.10.04

Study Guide and Problem Sheet/Classwork
 Lecture 9: Expansions

Learning Outcomes

Jargon

Permutations, combinations, power series.

Notation

${ }^{n} \mathrm{P}_{r},{ }^{n} \mathrm{C}_{r}$

Concepts

Calculating numbers of arrangements and selections; using ${ }^{n} \mathrm{C}_{r}$ to find the coefficients of a binomial expansion; finding the Maclaurin series for a given function; expanding $(1+x)^{n}$, where n is not a positive integer; restrictions on values of x for such an expansion; expanding $(a+x)^{n}$.

Problems

1. Calculate:
(a) ${ }^{7} \mathrm{P}_{3}$,
(b) ${ }^{4} \mathrm{P}_{4}$,
(c) ${ }^{7} \mathrm{P}_{1}$,
(d) the number of different 3 digit, odd numbers which can be formed from the set 1 , $2,3,4,5$, assuming that no member of the set is used more than once.
2. Calculate:
(a) ${ }^{7} \mathrm{C}_{3}$,
(b) ${ }^{4} \mathrm{C}_{4}$,
(c) ${ }^{7} \mathrm{C}_{1}$,
(d) the number of ways in which a committee of five can be selected from a group of 12 people.
3. Find:
(a) the coefficient of x^{5} in $(1+x)^{20}$
(b) the coefficient of x^{3} in $(1+2 x)^{5}$
(c) the coefficient of x^{22} in $(3+x)^{25}$
(d) the coefficient of x in $(2-18 x)^{10}$
(e) the coefficient of x in $(1+4 x)^{17}(1-3 x)^{41}$
4. (a) Write out the first 5 terms in the infinite series for $(1+x)^{-1}$.
(b) Write out the first 5 terms in the infinite series for $(1-x)^{-1}$.
(c) Take another look at Problem Sheet 2, Q. 8(d).
5. (a) Find the first 3 non-zero terms in the Maclaurin series for $\sin x$.
(b) Write down a condition for being able to use the small angle approximation $\sin x \simeq$ x, derived in Problem Sheet 4, Q. 6(b).
(c) Does an angle of 10° satisfy the condition?
6. (a) Explain why it is impossible to find a Maclaurin series for $\ln x$.
(b) It is possible to find one for $\ln (1+x)$. Obtain the first three non-zero terms, and use them to calculate $\ln (1.05)$ to three significant figures.
(c) In Problem Sheet 7, Q. 8(b) we also estimated the value of $\ln (1.05)$. How are the two methods related?
7. For the following binomial expressions, write down the range of values of x for which they can be expanded, and obtain the first three terms of the expansions:
(a) $(1+x)^{1 / 2}$
(b) $(1-2 x)^{1 / 10}$
(c) $\frac{1}{2+3 x}$
(d) $(a+x)^{-2}$
(e) $\left(1+2 x^{2}\right)^{1 / 3}$
8. Decide if the following statements are true or false:
(a) the equation $x^{2}-x+1=0$ has a repeated root
(b) $810^{\circ}=\frac{9 \pi}{2}$ radians
(c) $\cos ^{-1}(0)=\sin ^{-1}(\pi / 2)$
(d) For $y=x \mathrm{e}^{2 x}$ the value of $\frac{d^{2} y}{d x^{2}}$ at $x=0$ is 4
(e) The coefficient of x in the expansion of $(\alpha+\beta x)^{-n}$ is $n \beta / \alpha^{n+1}$
