Foundation Maths for First Year Physics M. Coppins 21.10.04

Study Guide and Problem Sheet/Classwork Lecture 9: Expansions

Learning Outcomes

Jargon

Permutations, combinations, power series.

Notation

 $^{n}\mathbf{P}_{r}, \ ^{n}\mathbf{C}_{r}$

Concepts

Calculating numbers of arrangements and selections; using ${}^{n}C_{r}$ to find the coefficients of a binomial expansion; finding the Maclaurin series for a given function; expanding $(1+x)^{n}$, where n is not a positive integer; restrictions on values of x for such an expansion; expanding $(a+x)^{n}$.

Problems

- 1. Calculate:
 - (a) ${}^{7}P_{3}$, (b) ${}^{4}P_{4}$, (c) ${}^{7}P_{1}$,
 - (d) the number of different 3 digit, odd numbers which can be formed from the set 1, 2, 3, 4, 5, assuming that no member of the set is used more than once.

2. Calculate:

- (a) ${}^{7}C_{3}$, (b) ${}^{4}C_{4}$, (c) ${}^{7}C_{1}$,
- (d) the number of ways in which a committee of five can be selected from a group of 12 people.
- 3. Find:
 - (a) the coefficient of x^5 in $(1+x)^{20}$
 - (b) the coefficient of x^3 in $(1+2x)^5$
 - (c) the coefficient of x^{22} in $(3+x)^{25}$
 - (d) the coefficient of x in $(2 18x)^{10}$
 - (e) the coefficient of x in $(1+4x)^{17}(1-3x)^{41}$
- 4. (a) Write out the first 5 terms in the infinite series for $(1 + x)^{-1}$.
 - (b) Write out the first 5 terms in the infinite series for $(1-x)^{-1}$.
 - (c) Take another look at Problem Sheet 2, Q. 8(d).

- 5. (a) Find the first 3 non-zero terms in the Maclaurin series for $\sin x$.
 - (b) Write down a condition for being able to use the small angle approximation $\sin x \simeq x$, derived in Problem Sheet 4, Q. 6(b).
 - (c) Does an angle of 10° satisfy the condition?
- 6. (a) Explain why it is impossible to find a Maclaurin series for $\ln x$.
 - (b) It is possible to find one for $\ln(1+x)$. Obtain the first three non-zero terms, and use them to calculate $\ln(1.05)$ to three significant figures.
 - (c) In Problem Sheet 7, Q. 8(b) we also estimated the value of ln(1.05). How are the two methods related?
- 7. For the following binomial expressions, write down the range of values of x for which they can be expanded, and obtain the first three terms of the expansions:
 - (a) $(1+x)^{1/2}$ (b) $(1-2x)^{1/10}$ (c) $\frac{1}{2+3x}$ (d) $(a+x)^{-2}$ (e) $(1+2x^2)^{1/3}$
- 8. Decide if the following statements are true or false:
 - (a) the equation $x^2 x + 1 = 0$ has a repeated root
 - (b) $810^{\circ} = \frac{9\pi}{2}$ radians (c) $\cos^{-1}(0) = \sin^{-1}(\pi/2)$
 - (d) For $y = xe^{2x}$ the value of $\frac{d^2y}{dx^2}$ at x = 0 is 4
 - (e) The coefficient of x in the expansion of $(\alpha + \beta x)^{-n}$ is $n\beta/\alpha^{n+1}$