Study Guide and Problem Sheet/Classwork Lecture 8: Integration

Learning Outcomes

Jargon

Integrate, integrand, integration constant, indefinite integral, definite integral, upper and lower limits of integration.

Notation

$$\int f(x)dx, \ \int_a^o f(x)dx$$

Concepts

The connection between differentiation and integration; the difference between indefinite integrals and definite integrals; the need for an integration constant; be able to carry out simple integrals using a change of variable; know how to integrate by parts; know the effect of reversing the limits in a definite integral; know how to use integration to find the area under a curve.

Problems

1. Compile your own table of standard integrals by writing down the indefinite integrals of the following functions (i.e., look back to Lecture 7 and find the functions which, when differentiated, produce these functions):

$$\alpha x^n \quad (n \neq -1) ; \quad (\alpha x + \beta)^n \quad (n \neq -1) ; \quad \frac{1}{x} ; \quad \frac{1}{\alpha x + \beta} ; \quad e^{\gamma x} ; \quad \cos x ; \quad \sin x .$$

2. Find the following indefinite integrals

(a)
$$\int x^5 dx$$
 (b) $\int x^{-5} dx$ (c) $\int 8(4x+1)^{-1/3} dx$ (d) $\int \frac{6x^2}{(2x^3+4)^2} dx$
(e) $\int \cos(\omega t) dt$

3. Use integration by parts to find the following indefinite integrals:

(a)
$$\int x e^{-x} dx$$
 (b) $\int x \cos x dx$ (c) $\int x^2 \ln x dx$

- 4. Sometimes an integration by parts is (even) less straightforward. Possibilities include:(i) the need to repeat the process for the integral on the right hand side, and,
 - (ii) regarding the integral as multiplied by 1 and putting $\frac{du}{dx} = 1$. Use integration by parts to find the following indefinite integrals

(a)
$$\int x^2 \cos x dx$$
 (b) $\int \ln x dx$ (c) $\int e^x \sin x dx$

5. Evaluate the following definite integrals:

(a)
$$\int_{0}^{1} x^{5} dx$$
 (b) $\int_{-1}^{1} \frac{6x^{2}}{(2x^{3}+4)^{2}} dx$ (c) $\int_{0}^{\pi/4} \cos(2t) dt$ (d) $\int_{0}^{2} x e^{-x} dx$
(e) $\int_{1}^{2} \ln x dx$

- 6. Find the area of each of the regions bounded by the lines or curves specified:
 - (a) the x axis, the curve $y = x^2$, the line x = 1, and the line x = 2.
 - (b) the line x = 2, the line x = 5, the curve $y = 2e^x$, and the x axis.
 - (c) the curve $y = x^2 + 3$, the line y = x, the line x = 0, and the line x = 2.
- 7. In Problem Sheet 4 we obtained the following identity: $\cos(\theta + \phi) = \cos\theta\cos\phi \sin\theta\sin\phi$. Use this to write down an expression for $\cos^2 x$ in terms of $\cos(2x)$, and, hence, evaluate $\int_0^{2\pi} \cos^2 x dx$.
- 8. (a) The figure shows an area under the curve y = f(x) divided into three vertical strips of equal width, d. The vertical edges of the strips have heights y_0, y_1, y_2 and y_3 , as shown. By approximating the area of each strip by the area of a trapezium, show that the total area is approximately $\frac{d}{2}(y_0 + 2y_1 + 2y_2 + y_3)$.

- (b) Write down the corresponding expression for five strips.
- (c) Use the five strip formula to find an approximate value of $\int_{1}^{2} x^{2} dx$. Compare it with the correct value, obtained in Q. 6(a).