Study Guide and Problem Sheet/Classwork
 Lecture 8: Integration

Learning Outcomes

Jargon

Integrate, integrand, integration constant, indefinite integral, definite integral, upper and lower limits of integration.

Notation

$$
\int f(x) d x, \int_{a}^{b} f(x) d x
$$

Concepts

The connection between differentiation and integration; the difference between indefinite integrals and definite integrals; the need for an integration constant; be able to carry out simple integrals using a change of variable; know how to integrate by parts; know the effect of reversing the limits in a definite integral; know how to use integration to find the area under a curve.

Problems

1. Compile your own table of standard integrals by writing down the indefinite integrals of the following functions (i.e., look back to Lecture 7 and find the functions which, when differentiated, produce these functions):
$\alpha x^{n} \quad(n \neq-1) ; \quad(\alpha x+\beta)^{n} \quad(n \neq-1) ; \quad \frac{1}{x} ; \quad \frac{1}{\alpha x+\beta} ; \quad \mathrm{e}^{\gamma x} ; \quad \cos x ; \quad \sin x$.
2. Find the following indefinite integrals
(a) $\int x^{5} d x$
(b) $\int x^{-5} d x$
(c) $\int 8(4 x+1)^{-1 / 3} d x$
(d) $\int \frac{6 x^{2}}{\left(2 x^{3}+4\right)^{2}} d x$
(e) $\int \cos (\omega t) d t$
3. Use integration by parts to find the following indefinite integrals:
(a) $\int x \mathrm{e}^{-x} d x$
(b) $\int x \cos x d x$
(c) $\int x^{2} \ln x d x$
4. Sometimes an integration by parts is (even) less straightforward. Possibilities include:
(i) the need to repeat the process for the integral on the right hand side, and,
(ii) regarding the integral as multiplied by 1 and putting $\frac{d u}{d x}=1$.

Use integration by parts to find the following indefinite integrals
(a) $\int x^{2} \cos x d x$
(b) $\int \ln x d x$
(c) $\int \mathrm{e}^{x} \sin x d x$
5. Evaluate the following definite integrals:
(a) $\int_{0}^{1} x^{5} d x$
(b) $\int_{-1}^{1} \frac{6 x^{2}}{\left(2 x^{3}+4\right)^{2}} d x$
(c) $\int_{0}^{\pi / 4} \cos (2 t) d t$
(d) $\int_{0}^{2} x \mathrm{e}^{-x} d x$
(e) $\int_{1}^{2} \ln x d x$
6. Find the area of each of the regions bounded by the lines or curves specified:
(a) the x axis, the curve $y=x^{2}$, the line $x=1$, and the line $x=2$.
(b) the line $x=2$, the line $x=5$, the curve $y=2 \mathrm{e}^{x}$, and the x axis.
(c) the curve $y=x^{2}+3$, the line $y=x$, the line $x=0$, and the line $x=2$.
7. In Problem Sheet 4 we obtained the following identity: $\cos (\theta+\phi)=\cos \theta \cos \phi-$ $\sin \theta \sin \phi$. Use this to write down an expression for $\cos ^{2} x$ in terms of $\cos (2 x)$, and, hence, evaluate $\int_{0}^{2 \pi} \cos ^{2} x d x$.
8. (a) The figure shows an area under the curve $y=f(x)$ divided into three vertical strips of equal width, d. The vertical edges of the strips have heights y_{0}, y_{1}, y_{2} and y_{3}, as shown. By approximating the area of each strip by the area of a trapezium, show that the total area is approximately $\frac{d}{2}\left(y_{0}+2 y_{1}+2 y_{2}+y_{3}\right)$.

(b) Write down the corresponding expression for five strips.
(c) Use the five strip formula to find an approximate value of $\int_{1}^{2} x^{2} d x$. Compare it with the correct value, obtained in Q. 6(a).

