Study Guide and Problem Sheet/Classwork
 Lecture 7: Differentiation

Learning Outcomes

Jargon

Increment, derivative with respect to x, differentiate, stationary points, maximum, minimum, point of inflexion.

Notation

$\delta x, \frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}, f^{\prime}(x), f^{\prime \prime}(x)$

Concepts

How to find the gradient at a point on a curve geometrically; differentiation from first principles; the product rule for differentiating; the chain rule; how to differentiate exponentials and logarithms (to base e); how to determine the stationary points of a function; how to distinguish the different types of stationary points; how to use differentiation to find small increments.

Problems

1. Differentiate from first principles:
(a) $y=3 x^{2}+x$
(b) $y=x^{3}$
(c) $y=\frac{1}{x}$
2. (a) Consider the function $y=\sin x$. For a small increment in x there is a corresponding small increment in y. Use the following identity (proved in Problem Sheet 4): $\sin (\theta+\phi)=\sin \theta \cos \phi+\cos \theta \sin \phi$ and the small angle approximations (also proved in Problem Sheet 4): $\sin \theta \simeq \theta$ and $\cos \theta \simeq 1-\theta^{2} / 2$, to show that $\delta y=\delta x \cos x-\frac{\delta^{2} x}{2} \sin x$. Hence, show that $\frac{d y}{d x}=\cos x$.
(b) Now consider $y=\cos x$. Using the identity (again proved in Problem Sheet 4): $\cos (\theta+\phi)=\cos \theta \cos \phi-\sin \theta \sin \phi$, and the small angle approximations, find an expression for δy in terms of $\sin x, \cos x$ and δx, and, hence, show that $\frac{d y}{d x}=-\sin x$.
3. Use the chain rule to differentiate the following:
(a) $y=(3 x+2)^{2}$
(b) $y=\left(7 x^{2}+1\right)^{10}$
(c) $y=(2 x-3)^{-4}$
(d) $y=(\alpha x+\beta)^{n}$
(e) $y=\ln (\alpha x+\beta)$
4. (a) Consider a function formed from the product of two functions, $y=u v$, where $u=f(x)$ and $v=g(x)$. If x is increased by δx there are corresponding small
increments $\delta u, \delta v$ and δy in u, v and y. Show that $\delta y=u \delta v+v \delta u+\delta u \delta v$, and, hence, obtain the product rule for differentiating.
(b) Use the chain rule to show that, if $w=v^{-1}$ then $\frac{d w}{d x}=-v^{-2} \frac{d v}{d x}$. Use this result and the product rule to show that if $y=\frac{u}{v}$ then $\frac{d y}{d x}=\frac{1}{v} \frac{d u}{d x}-\frac{u}{v^{2}} \frac{d v}{d x}$.
5. Use the product rule to differentiate the following:
(a) $y=x(x+1)$
(b) $y=x(4 x+3)^{2}$
(c) $y=7 x^{3}(2 x+1)^{-1}$
(d) $y=4 x \mathrm{e}^{2 x}$
(e) $y=(4 x-2)^{2} \ln x$
6. Find the first and second derivatives of the following:
(a) $f(x)=2 x^{7}$
(b) $f(x)=-3 x^{-2}$
(c) $f(x)=(x+5)^{10}$
(d) $f(x)=3 \mathrm{e}^{5 x}$
(e) $f(x)=\ln (x+1)$
7. Find the first and second derivatives of the following functions. Hence, find the stationary points of each one, and determine if they are maxima, minima, or points of inflexion.
(a) $y=x^{2}-2 x+5$
(b) $y=3 x-x^{3}$
(c) $y=\frac{4}{x}+x$
8. If $y=f(x)$ then a small increment in x produces a corresponding small increment in y. But for small increments $\frac{\delta y}{\delta x} \simeq \frac{d y}{d x}$, i.e., $\delta y \simeq \delta x \frac{d y}{d x}$. We can use this to find approximate values of functions.
(a) For $y=\ln x$, show that $y+\delta y \simeq \ln x+\delta x / x$
(b) To find an approximate value of $\ln (1.05)$ take $x=1$ and $\delta x=0.05$. Find y and the approximate value of δy, and, hence, estimate $\ln (1.05)$. Compare your answer with the calculator value.
(c) Estimate $\sqrt{ } 26$, and, having done so, compare your answer with the calculator value.
