M. Coppins 15.10.04

Study Guide and Problem Sheet/Classwork Lecture 5: Functions II

Learning Outcomes

Jargon

Roots of equations, repeated root, function of a function, inverse function, principal values, asymptote.

Notation

 $f^{-1}(x), \sin^{-1}, \cos^{-1}, \tan^{-1}$

Concepts

Graphs of functions $f(x) = a^x$ and $f(x) = \log_a x$; determining if a quadratic equation has two distinct real roots, a repeated root, or no real roots; finding the roots of a quadratic equation; writing the function of a function as a single function; breaking down a complicated function into a function of a function; the condition for a function to have an inverse; finding inverse functions; how the graphs of a function and its inverse are related; principal values of sin, cos and tan; graphs of sin⁻¹, cos⁻¹ and tan⁻¹.

Problems

- 1. Show that the sum of the roots of the quadratic equation $ax^2 + bx + c = 0$ is -b/a. (Use this result to check your answers to Q. 2.)
- 2. Determine if the following equations have real roots, and, if so, find them:

(a)
$$2x^2 - 10x + 12 = 0$$
 (b) $6x^2 + x = 1$ (c) $x^2 + 8x + 16 = 0$
(d) $5x^2 = 2x$ (e) $x^2 = 25$

- 3. Given f(x) = 2x, g(x) = 1 + 3x and h(x) = 1/x, find the following as functions of x: (a) f(g(x)) (b) g(h(x)) (c) h(g(x)) (d) f(g(h(x))) (e) h(g(f(x)))
- 4. Express each the following functions in the form y = f(u) and u = g(x) (i.e., break it up into a function of a function):

(a)
$$y = (x+2)^4$$
 (b) $y = \frac{1}{(3x+1)^2}$ (c) $y = 2^{x-1}$ (d) $y = \sin(x^2)$
(e) $y = 1 - 2\log_{10} x$

5. For each of the following functions sketch its graph and determine if it has an inverse. If so, find it.

(a)
$$y = 2x + 1$$
 (b) $y = 2^x$ (c) $y = x^3$ (d) $y = x^4$ (e) $y = \frac{1}{x+1}$

- 6. The principal values of $\cos^{-1} x$, i.e., the angles for which \cos^{-1} is defined, are $0 \le \cos^{-1} x \le \pi$. The principal values of $\tan^{-1} x$ are $-\frac{\pi}{2} < \tan^{-1} x < \frac{\pi}{2}$. Without using a calculator:
 - (a) find $\cos^{-1}(0)$, $\cos^{-1}(2)$, $\tan^{-1}(0)$, $\tan^{-1}(1)$. [Hint: one of these is undefined.]
 - (b) sketch $y = \cos^{-1}(x)$ (a.k.a. arccos).
 - (c) sketch $y = \tan^{-1}(x)$ (a.k.a. arctan).
- 7. If the graph of a function approaches a straight line, that line is called an *asymptote* of the function. For instance, y = 1/x approaches the x axis for very large values of x. The x axis is therefore an asymptote of y = 1/x for $x \to +\infty$. Find the following asymptotes:

(a)
$$y = \frac{1}{x^2}$$
 as $x \to +\infty$ (b) $y = \frac{1}{x^2}$ as $x \to 0$ (c) $y = 2^x$ as $x \to -\infty$
(d) $y = x + \frac{1}{x}$ as $x \to +\infty$ (e) $y = \tan^{-1} x$ as $x \to +\infty$ (see Q. 6c).

- 8. Decide if the following statements are true or false:
 - (a) The roots of the equations 3x 6 = 0 and 10 5x = 0 are the same.
 - (b) If $f(x) = \frac{1}{x}$ then $f(f(x)) = \frac{1}{x^2}$.
 - (c) The inverse function of $\log_2 x$ is 2^x .
 - (d) $\sin^{-1}(x)$ is not defined for x > 1.
 - (e) $\tan^{-1}(x)$ is an even function.