Study Guide and Problem Sheet/Classwork Lecture 5: Functions II

Learning Outcomes

Jargon

Roots of equations, repeated root, function of a function, inverse function, principal values, asymptote.

Notation

$f^{-1}(x), \sin ^{-1}, \cos ^{-1}, \tan ^{-1}$

Concepts

Graphs of functions $f(x)=a^{x}$ and $f(x)=\log _{a} x$; determining if a quadratic equation has two distinct real roots, a repeated root, or no real roots; finding the roots of a quadratic equation; writing the function of a function as a single function; breaking down a complicated function into a function of a function; the condition for a function to have an inverse; finding inverse functions; how the graphs of a function and its inverse are related; principal values of \sin , \cos and \tan; graphs of $\sin ^{-1}, \cos ^{-1}$ and $\tan ^{-1}$.

Problems

1. Show that the sum of the roots of the quadratic equation $a x^{2}+b x+c=0$ is $-b / a$. (Use this result to check your answers to Q. 2.)
2. Determine if the following equations have real roots, and, if so, find them:
(a) $2 x^{2}-10 x+12=0$
(b) $6 x^{2}+x=1$
(c) $x^{2}+8 x+16=0$
(d) $5 x^{2}=2 x$
(e) $x^{2}=25$
3. Given $f(x)=2 x, g(x)=1+3 x$ and $h(x)=1 / x$, find the following as functions of x :
(a) $f(g(x))$
(b) $g(h(x))$
(c) $h(g(x))$
(d) $f(g(h(x)))$
(e) $h(g(f(x)))$
4. Express each the following functions in the form $y=f(u)$ and $u=g(x)$ (i.e., break it up into a function of a function):
(a) $y=(x+2)^{4}$
(b) $y=\frac{1}{(3 x+1)^{2}}$
(c) $y=2^{x-1}$
(d) $y=\sin \left(x^{2}\right)$
(e) $y=1-2 \log _{10} x$
5. For each of the following functions sketch its graph and determine if it has an inverse. If so, find it.
(a) $y=2 x+1$
(b) $y=2^{x}$
(c) $y=x^{3}$
(d) $y=x^{4}$
(e) $y=\frac{1}{x+1}$
6. The principal values of $\cos ^{-1} x$, i.e., the angles for which $\cos ^{-1}$ is defined, are $0 \leq$ $\cos ^{-1} x \leq \pi$. The principal values of $\tan ^{-1} x$ are $-\frac{\pi}{2}<\tan ^{-1} x<\frac{\pi}{2}$. Without using a calculator:
(a) find $\cos ^{-1}(0), \cos ^{-1}(2), \tan ^{-1}(0), \tan ^{-1}(1)$. [Hint: one of these is undefined.]
(b) sketch $y=\cos ^{-1}(x)$ (a.k.a. arccos).
(c) sketch $y=\tan ^{-1}(x)$ (a.k.a. arctan).
7. If the graph of a function approaches a straight line, that line is called an asymptote of the function. For instance, $y=1 / x$ approaches the x axis for very large values of x. The x axis is therefore an asymptote of $y=1 / x$ for $x \rightarrow+\infty$. Find the following asymptotes:
(a) $y=\frac{1}{x^{2}}$ as $x \rightarrow+\infty$
(b) $y=\frac{1}{x^{2}}$ as $x \rightarrow 0$
(c) $y=2^{x}$ as $x \rightarrow-\infty$
(d) $y=x+\frac{1}{x}$ as $x \rightarrow+\infty$
(e) $y=\tan ^{-1} x$ as $x \rightarrow+\infty$ (see Q. 6c).
8. Decide if the following statements are true or false:
(a) The roots of the equations $3 x-6=0$ and $10-5 x=0$ are the same.
(b) If $f(x)=\frac{1}{x}$ then $f(f(x))=\frac{1}{x^{2}}$.
(c) The inverse function of $\log _{2} x$ is 2^{x}.
(d) $\sin ^{-1}(x)$ is not defined for $x>1$.
(e) $\tan ^{-1}(x)$ is an even function.
