Study Guide and Problem Sheet/Classwork Lecture 4: Trigonometry and Geometry

Learning Outcomes

Jargon

Identity, cartesian coordinates, arc, sector, quadrant, periodic function.

Concepts

Identity linking $\sin^2 \theta$ and $\cos^2 \theta$; finding the distance of a given point from the origin; finding the distance between two points and the gradient of the line joining them; finding the equation of a straight line given two points on it; the equation of a circle; converting from degrees to radians and vice versa; finding the length of an arc; finding the area of a sector; finding the area of a triangle; the form of the sin, cos and tan functions for all angles; how sin/cos of $\pi/2 - \theta$ are related to sin/cos of θ ; small angle approximations for sin and cos.

Problems

- 1. By considering a right angled triangle formed by splitting an equilateral triangle of side 2 in half, find exact values for sin, \cos and \tan of 30° and 60° .
- 2. (a) Convert the following angles into radians: (i) 45° , (ii) -10° , (iii) 720° . (b) Convert the following angles (in radians) into degrees: (i) 0.1, (ii) 6π , (iii) $-7\pi/2$.
- 3. (a) A parallelogram has adjacent sides a and b and the included angle is θ . Show that the area is $ab\sin\theta$.
 - (b) A triangle has adjacent sides a and b and the included angle is θ . Show that the area is $\frac{1}{2}ab\sin\theta$.
 - (c) A sector of a circle (shown shaded in the figure) of radius r subtends an angle θ at the centre. Show that if θ is in radians the area of the sector is $\frac{1}{2}r^2\theta$.

- 4. The reciprocal trigonometric functions cosecant, secant and cotangent are defined as follows: $\csc \theta = 1/\sin \theta$, $\sec \theta = 1/\cos \theta$, $\cot \theta = 1/\tan \theta$.
 - (a) Write down: cosec 45° , sec 30° , cot 60° .
 - (b) Prove the following identity: $\tan^2 \theta + 1 = \sec^2 \theta$.

- 5. (a) With reference to the figure show that: area of triangle ABD is $\frac{1}{2}ac\sin\theta\cos\phi$, area of triangle DBC is $\frac{1}{2}ac\cos\theta\sin\phi$, area of triangle ABC is $\frac{1}{2}ac\sin(\theta+\phi)$, and, hence, show that: $\sin(\theta+\phi) = \sin\theta\cos\phi + \cos\theta\sin\phi$.
 - (b) By replacing θ by $\pi/2 \theta$ and ϕ by $-\phi$, show that: $\cos(\theta + \phi) = \cos\theta\cos\phi - \sin\theta\sin\phi.$
 - (c) Hence, show that: $\cos \theta = 1 2 \sin^2(\theta/2)$.
- 6. (a) With reference to the figure show that:

where θ is in radians.

(b) By considering what happens to the ratio of areas as θ is made very small, show that for small angles $\sin \theta \simeq \theta$.

- (c) Using the identity $\cos \theta = 1 2 \sin^2 (\theta/2)$. (Q 5, above) and the small angle approximation for $\sin \theta$, show that for small angles $\cos \theta \simeq 1 \theta^2/2$.
- (d) Is the following statement true or false: these small angle approximations give values of sin and cos accurate to at least 5 decimal places for an angle of 1°.
- 7. Point A has coordinates (2,2). Point B has coordinates (3,4). Find:
 - (a) the distance from the origin to A,
 - (b) the distance from the origin to B,
 - (c) the distance between A and B,
 - (d) the gradient of the straight line which passes through A and B,
 - (e) tan of the angle between the x axis and the straight line through A and B,
 - (f) the equation of the straight line through A and B.
- (a) Write down an expression for the distance of an arbitrary point, coordinates (x, y) from a point with coordinates (a, b). Hence show that the equation of circle of radius r, centred at (a, b), has the form x² + y² + αx + βy = γ and find expressions for α, β and γ in terms of a, b and r.
 - (b) Find the radius and centre of the circles specified by the following equations:
 - (i) $x^2 + y^2 2x = 3$
 - (ii) $x^2 + y^2 + 4x 8y = -11$
 - (iii) $x^2 + y^2 + 2x + 4y = -9$