Study Guide and Problem Sheet/Classwork
 Lecture 4: Trigonometry and Geometry

Learning Outcomes

Jargon

Identity, cartesian coordinates, arc, sector, quadrant, periodic function.

Concepts

Identity linking $\sin ^{2} \theta$ and $\cos ^{2} \theta$; finding the distance of a given point from the origin; finding the distance between two points and the gradient of the line joining them; finding the equation of a straight line given two points on it; the equation of a circle; converting from degrees to radians and vice versa; finding the length of an arc; finding the area of a sector; finding the area of a triangle; the form of the sin, cos and tan functions for all angles; how \sin / \cos of $\pi / 2-\theta$ are related to \sin / \cos of θ; small angle approximations for \sin and cos.

Problems

1. By considering a right angled triangle formed by splitting an equilateral triangle of side 2 in half, find exact values for \sin , \cos and \tan of 30° and 60°.
2. (a) Convert the following angles into radians: (i) 45°, (ii) -10°, (iii) 720°. (b) Convert the following angles (in radians) into degrees: (i) 0.1 , (ii) 6π, (iii) $-7 \pi / 2$.
3. (a) A parallelogram has adjacent sides a and b and the included angle is θ. Show that the area is $a b \sin \theta$.
(b) A triangle has adjacent sides a and b and the included angle
is θ. Show that the area is $\frac{1}{2} a b \sin \theta$.

(c) A sector of a circle (shown shaded in the figure) of radius r subtends an angle θ at the centre. Show that if θ is in radians the area of the sector is $\frac{1}{2} r^{2} \theta$.

4. The reciprocal trigonometric functions cosecant, secant and cotangent are defined as follows: $\operatorname{cosec} \theta=1 / \sin \theta, \quad \sec \theta=1 / \cos \theta, \quad \cot \theta=1 / \tan \theta$.
(a) Write down: $\operatorname{cosec} 45^{\circ}$, sec 30°, $\cot 60^{\circ}$.
(b) Prove the following identity: $\tan ^{2} \theta+1=\sec ^{2} \theta$.
5. (a) With reference to the figure show that: area of triangle ABD is $\frac{1}{2} a c \sin \theta \cos \phi$, area of triangle DBC is $\frac{1}{2} a c \cos \theta \sin \phi$, area of triangle
 ABC is $\frac{1}{2} a c \sin (\theta+\phi)$, and, hence, show that: $\sin (\theta+\phi)=\sin \theta \cos \phi+\cos \theta \sin \phi$.
(b) By replacing θ by $\pi / 2-\theta$ and ϕ by $-\phi$, show that: $\cos (\theta+\phi)=\cos \theta \cos \phi-\sin \theta \sin \phi$.
(c) Hence, show that: $\cos \theta=1-2 \sin ^{2}(\theta / 2)$.
6. (a) With reference to the figure show that:

$$
\frac{\text { area of triangle } \mathrm{OAB}}{\text { area of sector } \mathrm{OAB}}=\frac{\sin \theta}{\theta}
$$

where θ is in radians.
(b) By considering what happens to the ratio of areas as θ is made very small, show that for small angles
 $\sin \theta \simeq \theta$.
(c) Using the identity $\cos \theta=1-2 \sin ^{2}(\theta / 2)$. (Q 5 , above) and the small angle approximation for $\sin \theta$, show that for small angles $\cos \theta \simeq 1-\theta^{2} / 2$.
(d) Is the following statement true or false: these small angle approximations give values of \sin and cos accurate to at least 5 decimal places for an angle of 1°.
7. Point A has coordinates $(2,2)$. Point B has coordinates $(3,4)$. Find:
(a) the distance from the origin to A ,
(b) the distance from the origin to B,
(c) the distance between A and B,
(d) the gradient of the straight line which passes through A and B,
(e) tan of the angle between the x axis and the straight line through A and B ,
(f) the equation of the straight line through A and B.
8. (a) Write down an expression for the distance of an arbitrary point, coordinates (x, y) from a point with coordinates (a, b). Hence show that the equation of circle of radius r, centred at (a, b), has the form $x^{2}+y^{2}+\alpha x+\beta y=\gamma$ and find expressions for α, β and γ in terms of a, b and r.
(b) Find the radius and centre of the circles specified by the following equations:
(i) $x^{2}+y^{2}-2 x=3$
(ii) $x^{2}+y^{2}+4 x-8 y=-11$
(iii) $x^{2}+y^{2}+2 x+4 y=-9$

