Foundation Maths for
First Year Physics
M. Coppins
13.10 .04

Study Guide and Problem Sheet/Classwork Lecture 3: Functions I

Learning Outcomes

Jargon

Function, independent variable, dependent variable, argument of function, x or y axis intercept, linear function, quadratic function, gradient, even and odd functions.

Notation

$f(x), \Delta x$

Concepts

Familiarity with the equations and graphs of linear and quadratic functions; connection between the sign of the gradient and the direction of the slope; effect of the following transformations on the curve $y=f(x): f(x+\alpha), f(x)+\alpha, \alpha f(x), f(\alpha x)$; effect of plotting function of form $f(x)=a x^{b}$ on log-log scales.

Problems

1. Given $f(x)=2 x+4$ write down:
(a) $f(0)$
(b) $f(2 x)$
(c) $f(-2 x)$
(d) $f(1 / x)$
(e) $f(3 a-2)$
2. An even function has the property that $f(x)=f(-x)$. An odd function has the property that $f(x)=-f(-x)$. Decide if the following functions are even, odd, or neither:
(a) $f(x)=x$
(b) $f(x)=x^{2}$
(c) $f(x)=x^{2}+2$
(d) $f(x)=x^{2}+x$
(e) $f(x)=(x+2)^{2}$
3. Find the equation of the straight line (in the form $y=a x+b$) which crosses the y axis at $y=2$ and has a gradient of:
(a) 1
(b) 4
(c) -2
(d) 0
(e) ∞
4. (a) Sketch the following functions for x in the range $-2 \leq x \leq 2$ (all three on the same set of axes): $y=x, y=x^{2}, y=x^{3}$.
(b) Sketch the following functions for x in the range $-2 \leq x \leq 2$ (all three on the same set of axes): $y=x^{-1}, y=x^{-2}, y=x^{-3}$.
5. In the lecture we found that the graph of $y=\gamma\left\{(x+\alpha)^{2}+\beta\right\}$ has the following properties: (i) y has an extreme value of $\gamma \beta$, (ii) this extreme value is a minimum if $\gamma>0$, a maximum if $\gamma<0$, (iii) the curve crosses the x axis if $\beta<0$.
What can you deduce about the form of the graph of the quadratic function $y=$ $a x^{2}+b x+c$? (i.e., rewrite the above properties in terms of a, b and c instead of α, β and γ).
6. (a) Given the function $f(x)=2 x+4$, sketch graphs of: $y=f(x), y=f(2 x)$, $y=f(-2 x)$.
(b) How would you describe the way in which the curve $y=f(x)$ is transformed into $y=f(\alpha x)$?
(c) In the lecture transformations of curves were illustrated using the function $f(x)=$ x^{2}. Why do you think a different function has been chosen here to illustrate the transformation $f(x) \rightarrow f(\alpha x)$? [Hint: your answer should include the word even.]
7. (a) Given $y=a x^{b}$, show that a graph of $Y=\log _{10} y$ against $X=\log _{10} x$ is a straight line, and determine the gradient of the line and its Y axis intercept.
(b) For some function $y=f(x)$, a graph of $Y=\log _{10} y$ against $X=\log _{10} x$ is a straight line of gradient -0.5 which intercepts the Y axis at $Y=-1$. What is $f(x)$?
(c) For a certain type of function $y=g(x)$ the graph of $Y=\log _{10} y$ against x (not X) is a straight line. Assuming that this straight line has a gradient of α and intercepts the Y axis at $Y=\beta$, deduce the form of $g(x)$.
8. Decide if the following statements are true or false:
(a) When plotting the graph of a function the independent variable is usually plotted on the horizontal axis.
(b) If $f(x)$ is zero at $x=5$ then $f(x-3)$ must be zero at $x=2$.
(c) $f(1 / x)$ is the same thing as $1 / f(x)$.
(d) The function $f(x)=-2 x^{3}$ gives positive values of $y=f(x)$ for all negative values of x.
(e) The lines $y=2 x+1$ and $y=\frac{1}{2}(7+4 x)$ are parallel.
