Foundation Maths for First Year Physics M. Coppins 12.10.04

Study Guide and Problem Sheet/Classwork Lecture 2: Basic Algebra

Learning Outcomes

Jargon

Like terms, coefficient, expansion, polynomial, order of a polynomial, binomial expansion, sequence, recurrence relation, series.

Notation

 $\sum_{j=1}^{n}$

Concepts

Removing brackets from algebraic expressions; familiarity with expansions of $(a + b)^2$, $(a-b)^2$ and (a+b)(a-b); using Pascal's triangle to find coefficients of a binomial expansion; rationalizing the denominator of a fraction involving surds; obtaining partial fractions for some simple algebraic fractions.

Problems

1. Find the coefficient of x^2 in the following expressions:

(a)
$$(3x+2)^2$$
 (b) $(x+2)(x+1)^2$ (c) $x(1+x)^{10}$ (d) $x^6 \left(1-\frac{1}{x}\right)^4$
(e) $(ax+b)^3$

2. Factorize the following expressions:

(a)
$$2x^2 + 4x + 2$$
 (b) $a^2x^3 + 2abx^2 + b^2x$ (c) $16x^2 - 9$
(d) $x^4 - 2a^2x^2 + a^4$ (e) $x^2 - (a+b)x + ab$

3. Write the following fractions with rational denominators:

(a)
$$\frac{1}{\sqrt{5} - \sqrt{2}}$$
 (b) $\frac{3}{2 + \sqrt{3}}$ (c) $\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$ (d) $\frac{3 + 5\sqrt{2}}{4 - 2\sqrt{2}}$
(e) $\frac{\sqrt{2}}{3\sqrt{2} - 2\sqrt{3}}$

- 4. A general second order polynomial ax^2+bx+c can be written in the form $\gamma\{(x+\alpha)^2+\beta\}$. Find expressions for α , β and γ in terms of a, b and c.
- 5. Expand $\left(2+\frac{p}{2}\right)^4$.

- 6. The expression $\frac{3x+1}{(x+2)(x-3)}$ can be written as $\frac{A}{(x+2)} + \frac{B}{(x-3)}$. This way of splitting up an expression with a denominator consisting of the product of two factors is called decomposing into *partial fractions*.
 - (a) Show that for any *x*: A(x-3) + B(x+2) = 3x + 1
 - (b) Substitute x = -2 to find A.
 - (c) Substitute an appropriate value of x to find B.
 - (d) Express $\frac{x+4}{(x+3)(x-5)}$ in partial fractions.
- 7. Write out the first four terms of the following series:

(a)
$$\sum_{j=1}^{\infty} 2^j$$
 (b) $\sum_{j=0}^{\infty} \left(-\frac{1}{2}\right)^j$ (c) $\sum_{j=2}^{\infty} j x^{j-2}$ (d) $\sum_{r=1}^{\infty} (-1)^{r+1} r x^r$
(e) $1 + \sum_{j=1}^{\infty} (-1)^j (j+1) x^j$

- 8. A geometric progression (GP) is a sequence in which each term is a constant multiple of the preceeding term. This constant multiple is called the *common ratio*. A GP has n terms, the first term is a, and the common ratio is r. The sum of the n terms is denoted S_n .
 - (a) Write down the first three terms and the last term.
 - (b) Show that $S_n rS_n = a ar^n$, and, hence, that $S_n = a \frac{(1 r^n)}{1 r}$.
 - (c) Show that if |r| < 1 the sum of the GP with an infinite number of terms is $S_{\infty} = \frac{a}{1-r}$.
 - (d) Hence show that $(1-x)^{-1}$ (for |x| < 1) can be written as the infinite series $1 + x + x^2 + x^3 + x^4 + \dots$