Foundation Maths for
First Year Physics
M. Coppins
12.10.04

Study Guide and Problem Sheet/Classwork
 Lecture 2: Basic Algebra

Learning Outcomes

Jargon

Like terms, coefficient, expansion, polynomial, order of a polynomial, binomial expansion, sequence, recurrence relation, series.

Notation

$$
\sum_{j=1}^{n}
$$

Concepts

Removing brackets from algebraic expressions; familiarity with expansions of $(a+b)^{2}$, $(a-b)^{2}$ and $(a+b)(a-b)$; using Pascal's triangle to find coefficients of a binomial expansion; rationalizing the denominator of a fraction involving surds; obtaining partial fractions for some simple algebraic fractions.

Problems

1. Find the coefficient of x^{2} in the following expressions:
(a) $(3 x+2)^{2}$
(b) $(x+2)(x+1)^{2}$
(c) $x(1+x)^{10}$
(d) $x^{6}\left(1-\frac{1}{x}\right)^{4}$
(e) $(a x+b)^{3}$
2. Factorize the following expressions:
(a) $2 x^{2}+4 x+2$
(b) $a^{2} x^{3}+2 a b x^{2}+b^{2} x$
(c) $16 x^{2}-9$
(d) $x^{4}-2 a^{2} x^{2}+a^{4}$
(e) $x^{2}-(a+b) x+a b$
3. Write the following fractions with rational denominators:
(a) $\frac{1}{\sqrt{ } 5-\sqrt{ } 2}$
(b) $\frac{3}{2+\sqrt{ } 3}$
(c) $\frac{\sqrt{ } 3+\sqrt{ } 2}{\sqrt{ } 3-\sqrt{ } 2}$
(d) $\frac{3+5 \sqrt{ } 2}{4-2 \sqrt{ } 2}$
(e) $\frac{\sqrt{ } 2}{3 \sqrt{ } 2-2 \sqrt{ } 3}$
4. A general second order polynomial $a x^{2}+b x+c$ can be written in the form $\gamma\left\{(x+\alpha)^{2}+\beta\right\}$. Find expressions for α, β and γ in terms of a, b and c.
5. Expand $\left(2+\frac{p}{2}\right)^{4}$.
6. The expression $\frac{3 x+1}{(x+2)(x-3)}$ can be written as $\frac{A}{(x+2)}+\frac{B}{(x-3)}$. This way of splitting up an expression with a denominator consisting of the product of two factors is called decomposing into partial fractions.
(a) Show that for any x : $A(x-3)+B(x+2)=3 x+1$
(b) Substitute $x=-2$ to find A.
(c) Substitute an appropriate value of x to find B.
(d) Express $\frac{x+4}{(x+3)(x-5)}$ in partial fractions.
7. Write out the first four terms of the following series:
(a) $\sum_{j=1}^{\infty} 2^{j}$
(b) $\sum_{j=0}^{\infty}\left(-\frac{1}{2}\right)^{j}$
(c) $\sum_{j=2}^{\infty} j x^{j-2}$
(d) $\sum_{r=1}^{\infty}(-1)^{r+1} r x^{r}$
(e) $1+\sum_{j=1}^{\infty}(-1)^{j}(j+1) x^{j}$
8. A geometric progression (GP) is a sequence in which each term is a constant multiple of the preceeding term. This constant multiple is called the common ratio. A GP has n terms, the first term is a, and the common ratio is r. The sum of the n terms is denoted S_{n}.
(a) Write down the first three terms and the last term.
(b) Show that $S_{n}-r S_{n}=a-a r^{n}$, and, hence, that $S_{n}=a \frac{\left(1-r^{n}\right)}{1-r}$.
(c) Show that if $|r|<1$ the sum of the GP with an infinite number of terms is $S_{\infty}=\frac{a}{1-r}$.
(d) Hence show that $(1-x)^{-1}$ (for $|x|<1$) can be written as the infinite series $1+x+x^{2}+x^{3}+x^{4}+\ldots$
