Study Guide and Problem Sheet/Classwork
 Lecture 1: Numbers

Learning Outcomes

Jargon

Rational number, irrational number, prime number, ratio, factorize, factorial, numerator, denominator, index, logarithm to base a.

Notation

$n!, \log _{a} c$

Concepts

Manipulating fractions; combining indices; the connection between indices and logarithms; manipulating logarithms.

Problems

1. Decide if the following numbers are rational or irrational:
(a) $\frac{37}{103}$
(b) $\frac{\pi}{103}$
(c) -5.137
(d) $\sqrt{ } 2+\frac{4}{7}$
(e) $\sqrt{ } 32$
2. Find the prime factors of the following numbers:
(a) 42
(b) 43
(c) 44
(d) 625
(e) 6 !
3. A cake is divided into two pieces in the ratio 3:2. What percentage of the cake is the larger piece?
4. Simplify the following fractions (i.e., write them in terms of a common, rational denominator):
(a) $\frac{1}{7}+\frac{1}{5}$
(b) $\frac{1006}{503}+\frac{14}{63}$
(c) $\frac{1}{\left(\frac{7}{6}-1\right)}-\frac{1}{\left(\frac{3}{2}-\frac{5}{6}\right)}$
(d) $\frac{5}{\sqrt{ } 3}-\frac{8}{\sqrt{ } 2}$
(e) $\frac{a}{b^{2}}-\frac{a c}{2 b}$
5. Simplify the following:
(a) $\left(\frac{1}{\left(2^{4}\right)^{-1 / 2}}\right)^{3}$
(b) $\left(\frac{1}{7}\right)^{0}+\left(\frac{1}{7}\right)^{-0.5} \times\left(\frac{1}{7}\right)^{-1.5}$
(c) $\frac{\left(x^{3}\right)^{1 / 2}}{\left(x^{2}\right)^{1 / 3}}$
(d) $\left(3^{x}\right)^{2} \times\left(\frac{1}{3}\right)^{-4 x}$
(e) $\left(\frac{a^{5}}{b^{-2}}\right)^{1 / 4} \times \frac{b^{3 / 2}}{a^{2}}$
6. By writing $b=a^{x}$ and $c=a^{y}$ prove the following laws of logarithms:
(a) $\log _{a}(b c)=\log _{a} b+\log _{a} c$
(b) $\log _{a}(b / c)=\log _{a} b-\log _{a} c$
(c) $\log _{a}\left(b^{n}\right)=n \log _{a} b$
7. Decide if the following statements are true or false:
(a) $\log _{2} 16=4$
(b) $\log _{x} 5=y$ implies that $y^{x}=5$
(c) $3 \log _{a} 4+\log _{a}\left(4^{-1}\right)-\log _{a} 2=\log _{a} 32$
(d) the logarithm of 1 to any base is zero
(e) $\log _{a} x$ is negative if $0<x<1$
8. Show that $\log _{a} c=\frac{\log _{10} c}{\log _{10} a}$. [Hint: take the log to base 10 of $c=a^{b}$.]
