Study Guide and Problem Sheet/Classwork Lecture 1: Numbers

Learning Outcomes

Jargon

Rational number, irrational number, prime number, ratio, factorize, factorial, numerator, denominator, index, logarithm to base a.

Notation

 $n!, \log_a c$

Concepts

Manipulating fractions; combining indices; the connection between indices and logarithms; manipulating logarithms.

Problems

1. Decide if the following numbers are rational or irrational:

(a)
$$\frac{37}{103}$$
 (b) $\frac{\pi}{103}$ (c) -5.137 (d) $\sqrt{2} + \frac{4}{7}$ (e) $\sqrt{32}$

2. Find the prime factors of the following numbers:

(a) 42 (b) 43 (c) 44 (d) 625 (e) 6!

- 3. A cake is divided into two pieces in the ratio 3:2. What percentage of the cake is the larger piece?
- 4. Simplify the following fractions (i.e., write them in terms of a common, rational denominator):

(a)
$$\frac{1}{7} + \frac{1}{5}$$
 (b) $\frac{1006}{503} + \frac{14}{63}$ (c) $\frac{1}{\left(\frac{7}{6} - 1\right)} - \frac{1}{\left(\frac{3}{2} - \frac{5}{6}\right)}$ (d) $\frac{5}{\sqrt{3}} - \frac{8}{\sqrt{2}}$
(e) $\frac{a}{b^2} - \frac{ac}{2b}$

5. Simplify the following:

(a)
$$\left(\frac{1}{(2^4)^{-1/2}}\right)^3$$
 (b) $\left(\frac{1}{7}\right)^0 + \left(\frac{1}{7}\right)^{-0.5} \times \left(\frac{1}{7}\right)^{-1.5}$ (c) $\frac{(x^3)^{1/2}}{(x^2)^{1/3}}$
(d) $(3^x)^2 \times \left(\frac{1}{3}\right)^{-4x}$ (e) $\left(\frac{a^5}{b^{-2}}\right)^{1/4} \times \frac{b^{3/2}}{a^2}$

- 6. By writing $b = a^x$ and $c = a^y$ prove the following laws of logarithms:
 - (a) $\log_a(bc) = \log_a b + \log_a c$
 - (b) $\log_a(b/c) = \log_a b \log_a c$
 - (c) $\log_a(b^n) = n \log_a b$

7. Decide if the following statements are true or false:

- (a) $\log_2 16 = 4$
- (b) $\log_x 5 = y$ implies that $y^x = 5$
- (c) $3\log_a 4 + \log_a(4^{-1}) \log_a 2 = \log_a 32$
- (d) the logarithm of 1 to any base is zero

1

(e) $\log_a x$ is negative if 0 < x < 1

8. Show that
$$\log_a c = \frac{\log_{10} c}{\log_{10} a}$$
. [Hint: take the log to base 10 of $c = a^b$.]