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1. (i) Evaluate the limits:

(a) lim
x→0

sinh (ex − 1)
x

;

(b) lim
x→∞

(x+ 1)1/2 − (x− 1)1/2

(x+ 2)1/2 − (x− 2)1/2
.

(ii) Sketch the curve described by

y2 =
(x+ 1) (x− 3)
(x+ 4)

,

determining the zeros, asymptotes, large x behaviour and regions where the
curve does not exist.

2. (i) Evaluate the integral

∫ 1

0
x3 e−x

2
dx .

(ii) Using the substitution t = tan x/2, or otherwise, show that

∫ π/2

0

dx

2 + sin x
=

π

3
√
3
.

(iii) Using the substitution x = sinh z, or otherwise, show that the integral

I =

∫ 1

0
(1 + x2)1/2 dx ,

is equal to

I = 2−1/2 +
1

2
sinh−1 1 .

PLEASE TURN OVER
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3. (i) Consider the function, written in polar co-ordinates

r = cos θ , (1)

with −
π

2
≤ θ ≤

π

2
.

(a) Determine the path length of the curve.

(b) Convert the polar equation (1) above into Cartesian form (i.e. in terms of
x and y) and hence show it describes a circle of radius 1/2.

(ii) Find the centre of mass of an equilateral triangle with vertices at (−1/2, 0), (1/2, 0) and
(0,
√
3/2) .

(iii) Find the first and second partial derivatives of

u (x, y) = sin
(y
x

)
.

4. Prove that (cos θ + i sin θ)n = cos nθ + i sin nθ (De Moivre’s Theorem).

If z1 = 3− 4 i and z2 = −
√
3 + i ,

(i) find the real and imaginary parts of z−11 ;

(ii) find the moduli and arguments of z1, z2 and z2 / z1 ;

(iii) find the modulus and argument of z 72 ;

(iv) find the moduli and arguments of all values of z
1
2
1 ;

(v) plot the results of (iv) on a rough sketch of the complex plane.

Quote arguments in radians ; values in the range −π < θ < 2π are acceptable.
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5. (i) Find unit normal vectors n̂1 and n̂2 to the two planes x+2y−z = −1 and
2x− y + 3z = 3 .

(ii) Find a unit vector directed along the line of intersection of the two planes.

(iii) Find the coordinates of the point where the line of intersection cuts the
z = 0 plane. Hence obtain the vector equation of the line of intersection.

(iv) Given a plane with equation

2x + y + z = α ,

where α is a constant, find the normal vector to the plane and show that it is
co-planar with n̂1 and n̂2 of part (i).

(v) Given that the line of intersection obtained in part (ii) lies in this plane, find
the constant α.

6. The vectors u, v and w are related by u = Tv and w = T (T v) ≡ T 2v,
where the 2× 2 matrix

T =

(
5 8
2 −1

)

.

(i) Find u and w when v =

(
3
−2

)

.

(ii) Find a matrix S such that S T = I .

(iii) Write down the definitions of the eigenvalues and eigenvectors of T and find
them.

(iv) Write down the eigenvalues and eigenvectors of T 2 and S and state how they
are related to those of T .

PLEASE TURN OVER
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7. Consider the differential equation

dx

dt
+ 2x = A .

(i) Prove that, when A is a constant, the solution to the equation is

x (t) = x (0) e−2t +
1

2
A (1− e−2t) .

(ii) For A = 4 and x (0) = 1, draw a rough graph of x as a function of t,
indicating the asymptote as t→∞.

(iii) Now consider the scenario where A = 4 for t ≤ 1, but A = 0 for t > 1.
For arbitrary x (0), obtain an expression for x (t) when t > 1.

(iv) Use the result of part (iii) to show that x (2) = x(0) when

x (0) = 2

(
e2 − 1
e4 − 1

)

.

(v) Evaluate the expression for x (0) in part (iv) and draw a rough graph of
x (t) in the range 0 < t < 2 under the scenario of part (iii).

8. The equation of a plane is given by

a x + b y + c z = d ,

where

n = a i + b j + ck

is the normal vector of the plane.

(i) Determine the equation of the tangent plane of the x2 + y2 + z2 = 9 surface
at the point (2, −1, 2) .

(ii) Determine the cosine of the angle this tangent plane makes with the surface
z = x+ y2 − 1 at the point (2, −1, 2) .

5



[MP1 2006]

9. (i) State Stokes’s theorem. Describe the regions over which the integrations are
carried out and the quantities that are being integrated.

(ii) Evaluate the line integral ∮

C
V ∙ d r ,

where C is a closed path consisting of the straight lines from the point (1, 0) to
(0, 1), the point (0, 1) to (−1, 0) and finally a semi-circle connecting the
points (−1, 0) and (1, 0) running via the third and fourth quadrants and

V = (x2 z + y2) i − xy j + z2k .

(iii) Check this result by using Stokes’s theorem written for the interior of C and
taking k as the normal direction to the surface S capping the path C.

10. (i) State the divergence theorem. Describe the regions over which the integrations
are carried out and the quantities that are being integrated.

(ii) Consider the vector field

V =
x i + y j + z k
√
x2 + y2 + z2

.

Find the outward flux across the boundary of the hemisphere bounded by the
spherical surface x2 + y2 + z2 = R2 (for z > 0) and the xy-plane.

(iii) Use the divergence theorem to verify the result.

END OF PAPER
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