Problems for Lecture 9: Determinants

1. Evaluate (a) $\left|\begin{array}{ccc}4 & 1 & 2 \\ 7 & 2 & 0 \\ -2 & 3 & 0\end{array}\right|$ (b) $\left|\begin{array}{ccc}3 & 2 & 4 \\ 5 & 4 & 8 \\ 8 & 2 & 9\end{array}\right| \quad$ (c) $\left|\begin{array}{ccccc}2 & 15 & -37 & 8 & 11 \\ 0 & 1 & 6 & 23 & -32 \\ 0 & 0 & 4 & 12 & -29 \\ 0 & 0 & 0 & 10 & 20 \\ 0 & 0 & 0 & 0 & 3\end{array}\right|$
2. Determine which of the following determinants are zero. For each determinant that is zero, try to identify what characteristic of the determinant ensures that it is so.
(a) $\left|\begin{array}{ccc}1 & 2 & 3 \\ 4 & 6 & 12 \\ -5 & 10 & -15\end{array}\right|$
(b) $\left|\begin{array}{ccc}0 & -1 & 0 \\ 0 & 5 & 3 \\ 2 & 0 & 0\end{array}\right|$
(c) $\left|\begin{array}{ccc}7 & 3 & 2 \\ 6 & 1 & -1 \\ 1 & 2 & 3\end{array}\right|$
(d) $\left|\begin{array}{ccc}0 & 7 & 0 \\ 3 & -5 & 6 \\ 2 & 3 & -4\end{array}\right|$

3 Show that the following determinants are zero:
(a) $\left|\begin{array}{ccc}0 & -a & -b \\ a & 0 & -c \\ b & c & 0\end{array}\right|$
(b) $\left|\begin{array}{llll}1 & a & a^{2} & a^{3}+b c d \\ 1 & b & b^{2} & b^{3}+c d a \\ 1 & c & c^{2} & c^{3}+d a b \\ 1 & d & d^{2} & d^{3}+a b c\end{array}\right|$

Both determinants can be shown to be zero by multiplying them out, but the point of this question is rather to obtain the results by using the general properties of determinants.

