Problems for Lecture 8: Answers

1. (a) We evaluate the determinant of the matrix of coefficients:
$\operatorname{det} \mathbf{A}=\left|\begin{array}{ccc}8 & 1 & 8 \\ 6 & 4 & 4 \\ 5 & -1 & 6\end{array}\right|=8\left|\begin{array}{cc}4 & 4 \\ -1 & 6\end{array}\right|-1\left|\begin{array}{cc}6 & 4 \\ 5 & 6\end{array}\right|+8\left|\begin{array}{cc}6 & 4 \\ 5 & -1\end{array}\right|=8 \cdot 28-16+8 \cdot(-26)=0$. The determinant
of the matrix of coefficients is zero and there is no unique solution. To determine whether there are no solutions or infinitely many solutions, we apply Gauss elimination: multiplying the second equation with -2 and adding to the first equation, and multiplying the second equation with $-3 / 2$ and adding to the third equation yields the equivalent system:

$$
\begin{aligned}
-4 x_{1} \quad-7 x_{2} & =-4 \\
6 x_{1}+4 x_{2}+4 x_{3} & =8 \quad \text { where the first and third equations are clearly incompatible. Hence } \\
-4 x_{1} \quad-7 x_{2} & =3
\end{aligned}
$$

there are no solutions to this system of equations.
(b) The is no unique solution. (If you insist on applying Cramer's rule to arrive at this conclusion, add a third equation $0 x_{1}+0 x_{2}+0 x_{3}=0$ and show that the determinant of the associated matrix of coefficients is zero.) The two equations each specify a plane in \mathbb{R}^{3}. These planes are not parallel (since their respective normal vectors $(4,7,-2)$ and $(1,-3,2)$ are not parallel) so they will intersect in a line. Applying Gauss elimination, multiplying the second equation with -4 and adding to the first equation, we find
$19 x_{2}-10 x_{3}=-14$
$x_{1}-3 x_{2}+2 x_{3}=6 \quad$. Now, multiplying the first equation by $3 / 19$ and adding to the second,
we find $\begin{aligned} & 19 x_{2}-10 x_{3}=-14 \\ & x_{1}\end{aligned}+\frac{8}{19} x_{3}=\frac{72}{19} \quad, ~ t h a t ~ i s, ~ \begin{aligned} & x_{1}=\frac{72}{19}-\frac{8}{19} x_{3} \\ & x_{2}=-\frac{14}{19}+\frac{10}{19} x_{3}\end{aligned}$ obtained by interchanging the two
equations and multiplying the new second equation with $1 / 19$ and rearranging. Hence, given x_{3}, x_{1} and x_{2} are determined by these two equations. We may write this system of equations on vector form: $\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{c}72 / 19 \\ -14 / 19 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}-8 / 19 \\ 10 / 19 \\ 1\end{array}\right) \Leftrightarrow \mathbf{r}=\mathbf{r}_{0}+\lambda \mathbf{d}$ where λ is a real number, revealing that the solution is a line through the point \mathbf{r}_{0} along the direction of \mathbf{d}.
(c) We evaluate the determinant of the matrix of coefficients:
$\operatorname{det} \mathbf{A}=\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 & -2 & 2 \\ 4 & -4 & -4\end{array}\right|=\left|\begin{array}{cc}-2 & 2 \\ -4 & -4\end{array}\right|-\left|\begin{array}{cc}2 & 2 \\ 4 & -4\end{array}\right|+\left|\begin{array}{cc}2 & -2 \\ 4 & -4\end{array}\right|=16+16+0=32$. Since $\operatorname{det} \mathbf{A} \neq 0$, there is
a unique solution. Applying Cramer's rule, we find $x_{1}=\frac{\left|\begin{array}{ccc}1 & 1 & 1 \\ 0 & -2 & 2 \\ -1 & -4 & -4\end{array}\right|}{\operatorname{det} \mathbf{A}}=\frac{16-2-2}{32}=\frac{3}{8}$,
$x_{2}=\frac{\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 & 0 & 2 \\ 4 & -1 & -4\end{array}\right|}{\operatorname{det} \mathbf{A}}=\frac{2+16-2}{32}=\frac{1}{2}$, and $x_{3}=\frac{\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 & -2 & 0 \\ 4 & -4 & -1\end{array}\right|}{\operatorname{det} \mathbf{A}}=\frac{2+2-0}{32}=\frac{1}{8}$ so the unique solution is $\left(x_{1}, x_{2}, x_{3}\right)=(3 / 8,1 / 2,1 / 8)$ which is easily checked by substituting into the original system of equations.
2.
(a) Substituting $y=0$ into the two equations yields $x+z=8$ and $2 x+3 z=7$, with the solution $x=17, z=-9$. Therefore, the coordinates of the point where the line intersects the plane $y=0$ is $(17,0,-9)$ or $\mathbf{r}_{\mathbf{0}}=17 \mathbf{i}-9 \mathbf{k}$.
(b) The coefficients in front of x, y, z determine a normal vector to each plane. Hence $\mathbf{n}_{1}=\mathbf{i}+3 \mathbf{j}+\mathbf{k}$ and $\mathbf{n}_{2}=2 \mathbf{i}+\mathbf{j}+3 \mathbf{k}$ or, indeed, multiples thereof are normal vectors to plane 1 and plane two, respectively.
(c) A vector directed along the line of intersection clearly lies in both planes and therefore it is perpendicular to both the normal vectors. Therefore, we may use $\mathbf{d}=\mathbf{n}_{1} \times \mathbf{n}_{2}$.

Taking the cross product we find $\mathbf{d}=\mathbf{n}_{1} \times \mathbf{n}_{2}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & 1 \\ 2 & 1 & 3\end{array}\right|=8 \mathbf{i}-\mathbf{j}-5 \mathbf{k}$.
(d) The equation for the line of intersection is determined by a point on the line, \mathbf{r}_{0}, and a direction vector for the line, d. Hence, the equation for the line of intersection is $\mathbf{r}=\mathbf{r}_{0}+\lambda \mathbf{d}=17 \mathbf{i}-9 \mathbf{k}+\lambda(8 \mathbf{i}-\mathbf{j}-5 \mathbf{k})=(17+8 \lambda) \mathbf{i}-\lambda \mathbf{j}-(9+5 \lambda) \mathbf{k}$ or, using column vectors: $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}17 \\ 0 \\ -9\end{array}\right)+\lambda\left(\begin{array}{c}8 \\ -1 \\ -5\end{array}\right)$. Isolating λ from the three associated equations, we find
$\lambda=\frac{x-17}{8}=\frac{y}{-1}=\frac{z+9}{-5}$. Note the direction ratios given by the coordinates of \mathbf{d} from part (c) are in the denominators, and the coordinates of \mathbf{r}_{0} from part (a) in the numerators.
3. Let us expand the determinant of \mathbf{A} by the second row:
$\operatorname{det} \mathbf{A}=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|=(-1)^{2+1} a_{21} \operatorname{det} \mathbf{A}_{21}+(-1)^{2+2} a_{22} \operatorname{det} \mathbf{A}_{22}+(-1)^{2+3} a_{23} \operatorname{det} \mathbf{A}_{23}$, that is,
$\operatorname{det} \mathbf{A}=-a_{21}\left|\begin{array}{ll}a_{12} & a_{13} \\ a_{32} & a_{33}\end{array}\right|+a_{22}\left|\begin{array}{ll}a_{11} & a_{13} \\ a_{31} & a_{33}\end{array}\right|-a_{23}\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{31} & a_{32}\end{array}\right|$
$=-a_{21}\left(a_{12} a_{33}-a_{32} a_{13}\right)+a_{22}\left(a_{11} a_{33}-a_{31} a_{13}\right)-a_{23}\left(a_{11} a_{32}-a_{31} a_{12}\right)$
$=a_{11}\left(a_{22} a_{33}-a_{32} a_{23}\right)-a_{21}\left(a_{12} a_{33}-a_{32} a_{13}\right)+a_{31}\left(a_{12} a_{23}-a_{22} a_{13}\right)$.
Let us expand the determinant of \mathbf{A} by the third column:
$\operatorname{det} \mathbf{A}=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|=(-1)^{1+3} a_{13} \operatorname{det} \mathbf{A}_{13}+(-1)^{2+3} a_{23} \operatorname{det} \mathbf{A}_{23}+(-1)^{3+3} a_{33} \operatorname{det} \mathbf{A}_{33}$, that is,
$\operatorname{det} \mathbf{A}=a_{13}\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right|-a_{23}\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{31} & a_{32}\end{array}\right|+a_{33}\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|$
$=a_{13}\left(a_{21} a_{32}-a_{31} a_{22}\right)-a_{23}\left(a_{11} a_{32}-a_{31} a_{12}\right)+a_{33}\left(a_{11} a_{22}-a_{21} a_{12}\right)$
$=a_{11}\left(a_{22} a_{33}-a_{32} a_{23}\right)-a_{21}\left(a_{12} a_{33}-a_{32} a_{13}\right)+a_{31}\left(a_{12} a_{23}-a_{22} a_{13}\right)$.
Indeed, the determinant of \mathbf{A} may be expanded by any row or any column.
4.
(a) $3 \cdot 2=6$.
(b) $3-1=2$.
(c) $3 \cdot 2 \cdot(3-1)=12$.
(d) $4 \cdot(3 \cdot 2)=24, \quad 4-1=3 ., \quad 4 \cdot 3 \cdot 2 \cdot(4-1)=72$.
(e) The determinant of an $n \times n$ matrix is defined as the sum of n terms, where each term contain the determinant of an $(n-1) \times(n-1)$ matrix. Such a determinant is defined as the sum of $(n-1)$ terms, where each term contains the determinant of an $(n-2) \times(n-2)$ matrix and so on. The total number of terms in the sum: $n \cdot(n-1) \cdot(n-2) \cdots \cdots 2 \cdot 1=n$! The number of multiplications in each term is $(n-1)$. Hence to total number of multiplications that has to be performed is $n!(n-1)$.
(f) $n!(n-1)=25!24=3.72 \times 10^{26}$.
(g) Total number of operations is the number of multiplications added with the number of additions, in total $n!(n-1)+n!-1=n!n-1=3.88 \cdot 10^{26}$. The time required to evaluate the determinant $3.88 \cdot 10^{26} / 3.6 \cdot 10^{14} \mathrm{~s} \approx 1.08 \cdot 10^{12} \mathrm{~s} \approx 34,156$ years.

