Problems for Lecture 7: Answers

1. Let \mathbf{r} be any point in the plane passing through \mathbf{a}. Then the vector $\mathbf{r}-\mathbf{a}$ is in the plane and hence normal to \mathbf{n}, implying $(\mathbf{r}-\mathbf{a}) \cdot \mathbf{n}=0$ or $\mathbf{r} \cdot \mathbf{n}=\mathbf{a} \cdot \mathbf{n}$. We note that $\mathbf{r} \cdot \mathbf{n}=x+y-2 z$ while $\mathbf{a} \cdot \boldsymbol{n}=1 \cdot 1+(-2) \cdot 1+3 \cdot(-2)=-7$ The equation of the plane is therefore $x+y-2 z=-7$, or any multiple thereof.
2. (a) Since the points A, B, and C are in the plane, they must satisfy the equation $4 x-3 y+2 z=7$. Substituting the coordinates of A, B and C in turn into the equation yields $4-3+2 a=7 \Leftrightarrow a=3,8-3 b+14=7 \Leftrightarrow b=5$, and $4 c-15-10=7 \Leftrightarrow c=8$.
(b) From the equation of the plane $4 x-3 y+2 z=7$ we identify that the vector $\mathbf{n}=4 \mathbf{i}-3 \mathbf{j}+2 \mathbf{k}$ is normal to the plane. Its magnitude is $|\mathbf{n}|=\sqrt{4^{2}+(-3)^{2}+2^{2}}=\sqrt{29}$ so the unit normal vector is $\pm \hat{\mathbf{n}}= \pm \frac{\mathbf{n}}{|\mathbf{n}|}= \pm \frac{4 \mathbf{i}-3 \mathbf{j}+2 \mathbf{k}}{\sqrt{29}}$. Either sign is acceptable.
(c) $\overrightarrow{A C}=(8,5,-5)-(1,1,3)=7 \mathbf{i}+4 \mathbf{j}-8 \mathbf{k}$ implying $\overrightarrow{A C} \cdot \mathbf{n}=7 \cdot 4+4 \cdot(-3)+(-8) \cdot 2=0$. Also, $\overrightarrow{B C}=(8,5,-5)-(2,5,7)=6 \mathbf{i}-12 \mathbf{k}$ implying $\overrightarrow{B C} \cdot \mathbf{n}=6 \cdot 4+0 \cdot(-3)+(-12) \cdot 2=0$. Hence we conclude that $\overrightarrow{A C} \perp \mathbf{n}$ and $\overrightarrow{B C} \perp \mathbf{n}$.
3. (a) $\left|\begin{array}{ll}4 & 2 \\ 1 & 5\end{array}\right|=4 \cdot 5-1 \cdot 2=18$ and (b) $\left|\begin{array}{ll}4 & 1 \\ 2 & 5\end{array}\right|=4 \cdot 5-2 \cdot 1=18$ too. The matrix association with case (b) is the transpose of that in case (a). Indeed, if \mathbf{A} is an $n \times n$ matrix, then $\operatorname{det} \mathbf{A}=\operatorname{det} \mathbf{A}^{t}$ where the matrix \mathbf{A}^{t} is the transpose of matrix \mathbf{A}, that is, the matrix obtained by reflecting the matrix \mathbf{A} across its main diagonal. In other words, the $i j t h$ entry in \mathbf{A}^{t} is equal to the $j i t h$ entry in \mathbf{A}, that is, $a_{i j}^{t}=a_{j i}$. Hence, the value of a determinant is unchanged if rows and columns are interchanged.
(c) $\left|\begin{array}{ll}1 & 5 \\ 4 & 2\end{array}\right|=1 \cdot 2-4 \cdot 5=-18$. The two rows of the determinant in (a) have been reversed. Indeed, the sign of a determinant is reversed if two rows (or two columns) are interchanged.
(d) $\left|\begin{array}{ll}8 & 2 \\ 2 & 5\end{array}\right|=8 \cdot 5-2 \cdot 2=36$. Column 1 of determinant (a) has been multiplied by a factor of 2. Indeed, if the matrix \mathbf{B} is obtained from the matrix \mathbf{A} by multiplying some column (or row) by a number $r, \operatorname{det} \mathbf{B}=r \operatorname{det} \mathbf{A}$.
(e) $\left|\begin{array}{ll}4 & 2 \\ 5 & 7\end{array}\right|=4 \cdot 7-5 \cdot 2=18$. Row 1 of determinant (a) has been added to row 2 . Indeed, if the matrix \mathbf{B} is obtained from the matrix \mathbf{A} by adding a numerical multiple of one row (column) to another, $\operatorname{det} \mathbf{B}=\operatorname{det} \mathbf{A}$.
4. $\quad\left|\begin{array}{cc}a & b \\ c a & c b\end{array}\right|=a \cdot c b-c a \cdot b=0$. Indeed, if any two rows (or colums) of a matrix \mathbf{A} are proportional, $\operatorname{det} \mathbf{A}=0$.
5. (a) $\begin{gathered}3 x+5 y=14 \\ 2 x+4 y=10\end{gathered} \Leftrightarrow\left(\begin{array}{ll}3 & 5 \\ 2 & 4\end{array}\right)\binom{x}{y}=\binom{14}{10}$. The determinant of the matrix of coefficients is $\left|\begin{array}{ll}3 & 5 \\ 2 & 4\end{array}\right|=3 \cdot 4-2 \cdot 5=2 \neq 0$. Hence there is a unique solution and according to Cramer's rule $x=\frac{\left|\begin{array}{ll}14 & 5 \\ 10 & 4\end{array}\right|}{\left|\begin{array}{ll}3 & 5 \\ 2 & 4\end{array}\right|}=\frac{14 \cdot 4-10 \cdot 5}{2}=\frac{6}{2}=3$ and $y=\frac{\left|\begin{array}{ll}3 & 14 \\ 2 & 10\end{array}\right|}{\left|\begin{array}{lc}3 & 5 \\ 2 & 4\end{array}\right|}=\frac{3 \cdot 10-2 \cdot 14}{2}=\frac{2}{2}=1$. The two lines cross at the point $(x, y)=(3,1)$.
(b) $\begin{gathered}3 x-5 y=8 \\ 7 x+2 y=12\end{gathered} \Leftrightarrow\left(\begin{array}{cc}3 & -5 \\ 7 & 2\end{array}\right)\binom{x}{y}=\binom{8}{12}$. The determinant of the matrix of the coefficients to the system of linear equations is $\left|\begin{array}{cc}3 & -5 \\ 7 & 2\end{array}\right|=3 \cdot 2-7 \cdot(-5)=41 \neq 0$. There is a unique solution. Cramer's rule yields $x=\frac{\left|\begin{array}{cc}8 & -5 \\ 12 & 2\end{array}\right|}{\left|\begin{array}{cc}3 & -5 \\ 7 & 2\end{array}\right|}=\frac{8 \cdot 2-12 \cdot(-5)}{41}=\frac{76}{41}$ and $y=\frac{\left|\begin{array}{cc}3 & 8 \\ 7 & 12\end{array}\right|}{\left|\begin{array}{cc}3 & -5 \\ 7 & 2\end{array}\right|}=\frac{3 \cdot 12-7 \cdot 8}{41}=-\frac{20}{41}$. The two lines cross at the point $(x, y)=\left(\frac{76}{41},-\frac{20}{41}\right)$. (c) $\begin{gathered}6 x+3 y=9 \\ 4 x+2 y=6\end{gathered} \Leftrightarrow\left(\begin{array}{ll}6 & 3 \\ 4 & 2\end{array}\right)\binom{x}{y}=\binom{9}{6}$ The determinant of the matrix of coefficients is $\left|\begin{array}{ll}6 & 3 \\ 4 & 2\end{array}\right|=6 \cdot 2-4 \cdot 3=0$. Hence there is no unique solution. We notice that the two equations are proportional since the second can be obtained from the first by multiplication with $2 / 3$. Therefore, the equations represent the same line and we have infinitely many solutions, namely all the points on the line $2 x+y=3$. .
(d) The associated determinant $\left|\begin{array}{cc}1.4 & -1.2 \\ -2.1 & 1.8\end{array}\right|=1.4 \cdot 1.8-(-2.1) \cdot(-1.2)=0$. Hence there is no unique solutions. The two lines are parallel but have no points in common and there are no solutions to the pair is equations.
