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Problems for Lecture 15: Answers 

 
1. First we rotate the coordinate system  anti-clockwise by applying the rotation 

matrix  which is equivalent to rotating a vector clockwise 

by , hence the negative sign! This transformation is followed by an extension by a 

factor 2 along the “new” x’-asis by applying the function . Finally, we 

rotate the 

45

⎟

⎞
⎟

45

cos 45 sin 45
sin 45 cos 45−

⎛ ⎞
= ⎜

−⎝ ⎠
R

45
2 0
0 1
⎛

= ⎜
⎝ ⎠

T

coordinate system  clockwise by applying the rotation matrix 

 which is equivalent to rotating a vector anti-clockwise by 

. The composite transformation is the matrix product of these three matrices:  
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.  If p and q are to have 

the same magnitude, then  
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These conditions imply that the column vectors in T are normalised and orthogonal. 
Hence T is an orthogonal matrix. Likewise, these are precisely the same conditions for 
the transpose of T to be its inverse, because 
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3. Since , we find that 11 12 21 22 22 11 12 21 210 / ,t t t t t t t t t+ = ⇔ = − ≠
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22 12 11 12 21 12 21 21 111 / /t t t t t t t t t= + = + = + 2 2 t12 12 21t t t= / 21 12t, that is = ±  and . 

But 2×2 rotation matrices do not allow for the upper sign option, so the conclusion is 
that orthogonal matrices represent a broader class than rotation matrices. The reason is 
that orthogonal matrices can include reflections as well as rotations.  
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4.  is orthogonal since  It is a rotation 

matrix with .  is orthogonal since 

1T 2 20.8 0.6 1 and 0.8 0.6 ( 0.6 0.8) 0.+ = ⋅ + − ⋅ =

2T36.87θ = − ( ) ( )
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3 / 2 1/ 2 1/ 2 3 / 2− ⋅ + ⋅ 0.=  However,  is not a a pure rotation matrix.  is not an 
orthogonal matrix. The column vectors are unit vectors but they are not orthogonal 
since 
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1 . Changing the sign on one of the entries in the 
matrix  would render it orthogonal.   
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5.  is orthogonal since all the column vectors are normalised and pair-wise orthogonal. 
 is not orthogonal. The column vectors are normalised but column vector 1 and 3 

are not orthogonal.  would, however, be orthogonal if the sign of any one of the four 
fractional elements were reversed.    
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6. For an orthogonal matrix O, , where I is the identity matrix, so  tOO = I
21 det det det det (det )t t= = = ⋅ =I OO O O O  

where the last step follows because , see determinant property 7 on FS 6.    det dett =O O

The conclusion is that ( )2det 1 det 1= ⇔ =O O ± . 
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