Problems for Lecture 15: Answers

1. First we rotate the coordinate system 45° anti-clockwise by applying the rotation matrix $\mathbf{R}_{-45^{\circ}}=\left(\begin{array}{cc}\cos 45^{\circ} & \sin 45^{\circ} \\ -\sin 45^{\circ} & \cos 45^{\circ}\end{array}\right)$ which is equivalent to rotating a vector clockwise by 45°, hence the negative sign! This transformation is followed by an extension by a factor 2 along the "new" x '-asis by applying the function $\mathbf{T}=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$. Finally, we rotate the coordinate system 45° clockwise by applying the rotation matrix $\mathbf{R}_{45^{\circ}}=\left(\begin{array}{cc}\cos 45^{\circ} & -\sin 45^{\circ} \\ \sin 45^{\circ} & \cos 45^{\circ}\end{array}\right)$ which is equivalent to rotating a vector anti-clockwise by 45°. The composite transformation is the matrix product of these three matrices:

$$
\begin{aligned}
\mathbf{R}_{45^{\circ}} \mathbf{T} \mathbf{R}_{-45^{\circ}} & =\left(\begin{array}{cc}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)\left(\begin{array}{cc}
2 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
-1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)\left(\begin{array}{cc}
\sqrt{2} & \sqrt{2} \\
-1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right) \\
& =\left(\begin{array}{ll}
3 / 2 & 1 / 2 \\
1 / 2 & 3 / 2
\end{array}\right) .
\end{aligned}
$$

2. $\quad \mathbf{T} \mathbf{p}=\mathbf{q} \Leftrightarrow\left(\begin{array}{cc}t_{11} & t_{12} \\ t_{21} & t_{22}\end{array}\right)\binom{p_{x}}{p_{y}}=\binom{q_{x}}{q_{y}} \Leftrightarrow\binom{t_{11} p_{x}+t_{12} p_{y}}{t_{21} p_{x}+t_{22} p_{y}}=\binom{q_{x}}{q_{y}}$. If \mathbf{p} and \mathbf{q} are to have the same magnitude, then
$p_{x}^{2}+p_{y}^{2}=q_{x}^{2}+q_{y}^{2} \Leftrightarrow$
$p_{x}^{2}+p_{y}^{2}=\left(t_{11} p_{x}+t_{12} p_{y}\right)^{2}+\left(t_{21} p_{x}+t_{22} p_{y}\right)^{2} \Leftrightarrow$
$p_{x}^{2}+p_{y}^{2}=\left(t_{11}^{2}+t_{21}^{2}\right) p_{x}^{2}+\left(t_{12}^{2}+t_{22}^{2}\right) p_{y}^{2}+\left(t_{11} t_{12}+t_{21} t_{22}\right) 2 p_{x} p_{y} \Leftrightarrow$
$t_{11}^{2}+t_{21}^{2}=t_{12}^{2}+t_{22}^{2}=1$ and $t_{11} t_{12}+t_{21} t_{22}=0$.
These conditions imply that the column vectors in \mathbf{T} are normalised and orthogonal. Hence \mathbf{T} is an orthogonal matrix. Likewise, these are precisely the same conditions for the transpose of \mathbf{T} to be its inverse, because

$$
\mathbf{T}^{t} \mathbf{T}=\left(\begin{array}{ll}
t_{11} & t_{21} \\
t_{12} & t_{22}
\end{array}\right)\left(\begin{array}{ll}
t_{11} & t_{12} \\
t_{21} & t_{22}
\end{array}\right)=\left(\begin{array}{cc}
t_{11}^{2}+t_{21}^{2} & t_{11} t_{12}+t_{21} t_{22} \\
t_{12} t_{11}+t_{22} t_{21} & t_{12}^{2}+t_{22}^{2}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \Leftrightarrow \mathbf{T}^{t}=\mathbf{T}^{-1} .
$$

3. Since $t_{11} t_{12}+t_{21} t_{22}=0 \Leftrightarrow t_{22}=-t_{11} t_{12} / t_{21}, t_{21} \neq 0$, we find that
$1=t_{12}^{2}+t_{22}^{2}=t_{12}^{2}+\left(t_{11} t_{12} / t_{21}\right)^{2}=t_{12}^{2} / t_{21}^{2}\left(t_{21}^{2}+t_{11}^{2}\right)=t_{12}^{2} / t_{21}^{2}$, that is $t_{21}= \pm t_{12}$ and $t_{22}=\mp t_{11}$.
But 2×2 rotation matrices do not allow for the upper sign option, so the conclusion is that orthogonal matrices represent a broader class than rotation matrices. The reason is that orthogonal matrices can include reflections as well as rotations.
4. $\quad \mathbf{T}_{1}$ is orthogonal since $0.8^{2}+0.6^{2}=1$ and $0.8 \cdot 0.6+(-0.6 \cdot 0.8)=0$. It is a rotation matrix with $\theta=-36.87^{\circ} . \mathbf{T}_{2}$ is orthogonal since $(\sqrt{3} / 2)^{2}+(1 / 2)^{2}=1$ and $-\sqrt{3} / 2 \cdot 1 / 2+1 / 2 \cdot \sqrt{3} / 2=0$. However, \mathbf{T}_{2} is not a a pure rotation matrix. \mathbf{T}_{3} is not an orthogonal matrix. The column vectors are unit vectors but they are not orthogonal since $1 / \sqrt{2} \cdot 1 / \sqrt{2}+1 / \sqrt{2} \cdot 1 / \sqrt{2}=1 \neq 0$. Changing the sign on one of the entries in the matrix \mathbf{T}_{3} would render it orthogonal.
5. $\quad \mathbf{A}_{1}$ is orthogonal since all the column vectors are normalised and pair-wise orthogonal. \mathbf{A}_{2} is not orthogonal. The column vectors are normalised but column vector 1 and 3 are not orthogonal. \mathbf{A}_{2} would, however, be orthogonal if the sign of any one of the four fractional elements were reversed.
6. For an orthogonal matrix $\mathbf{O}, \mathbf{O O}^{t}=\mathbf{I}$, where \mathbf{I} is the identity matrix, so $1=\operatorname{det} \mathbf{I}=\operatorname{det} \mathbf{O} \mathbf{O}^{t}=\operatorname{det} \mathbf{O} \cdot \operatorname{det} \mathbf{O}^{t}=(\operatorname{det} \mathbf{O})^{2}$
where the last step follows because $\operatorname{det} \mathbf{O}^{t}=\operatorname{det} \mathbf{O}$, see determinant property 7 on FS 6.
The conclusion is that $(\operatorname{det} \mathbf{O})^{2}=1 \Leftrightarrow \operatorname{det} \mathbf{O}= \pm 1$.
