Problems for Lecture 15: Orthogonal Transformations

1. Show that an extension by a factor 2 along a line at 45° to the x and y axes (i.e., parallel to the direction vector $\mathbf{i}+\mathbf{j}$) is represented by the matrix transformation $\left(\begin{array}{ll}3 / 2 & 1 / 2 \\ 1 / 2 & 3 / 2\end{array}\right)$.
2. The matrix $\mathbf{T}=\left(\begin{array}{ll}t_{11} & t_{12} \\ t_{21} & t_{22}\end{array}\right)$ transforms the vector $\mathbf{p}=\binom{p_{x}}{p_{y}}$ into the vector $\mathbf{q}=\binom{q_{x}}{q_{y}}$.

If the magnitude of the two vectors are the same $|\mathbf{p}|=|\mathbf{q}|$, what conditions between the elements $t_{11}, t_{12}, t_{21}, t_{22}$ must be satisfied?

Hence show that, under these conditions, the inverse of \mathbf{T} is its transpose, that is, $\mathbf{T}^{-1}=\mathbf{T}^{t}$. [HINT: See Classwork 5, question (d).]
3. Matrices that satisfy the conditions of question 2 are called orthogonal matrices (see Classwork 5 for definition). Can all 2×2 orthogonal matrices be represented by rotation matrices of the form $\mathbf{R}_{\theta}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$?
4. Determine whether the following 2×2 matrices are orthogonal:
(a) $\mathrm{T}_{1}=\left(\begin{array}{cc}0.8 & 0.6 \\ -0.6 & 0.8\end{array}\right)$,
(b) $\mathbf{T}_{2}=\left(\begin{array}{cc}-\sqrt{3} / 2 & 1 / 2 \\ 1 / 2 & \sqrt{3} / 2\end{array}\right)$,
(c) $\mathbf{T}_{3}=\left(\begin{array}{ll}1 / \sqrt{2} & 1 / \sqrt{2} \\ 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right)$.

Consider your conclusions in the light of questions 2 and 3.
5. One of the following 3×3 matrices is orthogonal, and the other could be made so by a single sign change. Which is which, and what sign change would be necessary?
(a) $\quad \mathbf{A}_{1}=\left(\begin{array}{ccc}1 / \sqrt{2} & 1 / 2 & -1 / 2 \\ -1 / \sqrt{2} & 1 / 2 & -1 / 2 \\ 0 & 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right)$
(b) $\quad \mathbf{A}_{2}=\left(\begin{array}{ccc}0 & 1 & 0 \\ -4 / 5 & 0 & 3 / 5 \\ 3 / 5 & 0 & -4 / 5\end{array}\right)$.
6. If \mathbf{O} is an orthogonal matrix, show that $\operatorname{det} \mathbf{O}= \pm 1$.
[HINT: Use the fact that $\operatorname{det}(\mathbf{A B})=(\operatorname{det} \mathbf{A}) \cdot(\operatorname{det} \mathbf{B})$, where \mathbf{A} and \mathbf{B} are square matrices of the same order. Remember that the inverse of an orthogonal matrix \mathbf{O} is equal to its transpose, $\mathbf{O}^{-1}=\mathbf{O}^{t}$. One other property of determinants is also needed, see FS 6.]

