Problems for Lectures 14: Lines, Planes, Rotations

1. A plane in \mathbb{R}^{3} is defined by the equation $5 x-4 y-3 z=10$. Find
(a) the unit normal vector $\hat{\mathbf{n}}_{1}$,
(b) the minimal (shortest, perpendicular) distance, d_{0}, from the origin to the plane,
(c) the mininam distance, d_{p}, from the point $\overrightarrow{O P}=(1,3,5)$ to the plane.
2. Consider the two planes $5 x-4 y-3 z=10$ and $-2 x+y+z=2$. Find a normal vector \mathbf{n}_{2} to the second plane (you found a normal to the first in question 1). Hence, find an equation for the line of intersection of the two planes in both vector and Cartesian form.
3. What can you say about the intersection of a third plane defined by $x-2 y-z=14$ with the two planes specified in question 2 ?
4. Find the minimal distance from the point $\overrightarrow{O P}=(1,-2,0)$ to the line joining the two points $\overrightarrow{O A}=(-2,1,2)$ and $\overrightarrow{O B}=(5,5,5)$.
5. For which value of α do the two lines given by $\mathbf{r}=(\mathbf{i}+2 \mathbf{j}+3 \mathbf{k})+\lambda(3 \mathbf{i}+2 \mathbf{j}+\mathbf{k}), \lambda \in \mathbb{R}$ and $\mathbf{r}=(\alpha \mathbf{i}+\mathbf{j}+\mathbf{k})+\mu(2 \mathbf{i}-3 \mathbf{j}-4 \mathbf{k}), \mu \in \mathbb{R}$ intersect?
6. Consider \mathbb{R}^{2}. (a) Write down the matrix of the transformation defined by $\begin{aligned} & x^{\prime}=2 x+3 y \\ & y^{\prime}=x-y\end{aligned}$.
(b) Write down the equations for the transformation whose matrix is $\mathbf{T}=\left(\begin{array}{cc}7 & -4 \\ 2 & 0\end{array}\right)$.
7. State the transformed position of the point $(2,1)$ under the following transformations:
(a) Contraction (shrinkage) of factor 2 in the y-direction,
(b) Extension (enlargement) of factor 3 in the x - and y -direction.
(c) Reflection in the x-axis.
8. The 3×3 matrix for a rotation of angle θ about the z-axis is $\mathbf{R}_{\theta}^{z}=\left(\begin{array}{ccc}\cos \theta & \mp \sin \theta & 0 \\ \pm \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right)$.
(a) Which signs apply if a positive θ corresponds to anti-clockwise rotation about the positive z-axis in a right-handed coordinate system?
Find the analogous matrices for
(b) an anti-clockwise rotation about the positive x-axis, \mathbf{R}_{θ}^{x},
(c) an anti-clockwise rotation about the positive y-axis, \mathbf{R}_{θ}^{y}.
9. Find the resulting vector if $\mathbf{r}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ is rotated about the $+z$-axis by (a) 45° anticlockwise and (b) 45° clockwise. Check that the magnitude remains invariant.
10. Using the same sign-convention as in question 8, the vector in the previous question is rotated first by 45° anti-clockwise about the $+y$-axis and then by 45° clockwise about the $+x$-axis. Find the new vector. Check, once again, that the operation preserves the magnitude of the vector.
