Problems for Lecture 13

Homogeneous Equations, Triple Products, Linear Independence

1. Determine which of following pairs of homogeneous equations have a non-trivial solution and, for those that do, find the equation of the line that represents the solution.
(a) $3 x+5 y=0$
(b) $\begin{aligned} 3 x-5 y & =0 \\ 7 x+2 y & =0,\end{aligned}$
(c) $\begin{array}{r}6 x+3 y=0 \\ 4 x+2 y=0,\end{array}$
(d) $\begin{aligned} 1.4 x-1.2 y & =0 \\ -2.1 x+1.8 y & =0 .\end{aligned}$
2. Which of following sets of homogeneous equations have a non-trivial solution?
$8 x+y+8 z=0$
$5 p+2 q+2 r=0$
(a) $6 x+4 y+4 z=0$
(b) $p-q+4 r=0$
$5 x-y+6 z=0$,

$$
7 p+r=0,
$$

$$
\text { (c) } \begin{aligned}
12 x_{1}-16 x_{2}+2 x_{3}+8 x_{4} & =0 \\
-6 x_{1}+6 x_{2}+14 x_{3}-3 x_{4} & =0 \\
10 x_{1}+10 x_{2}-7 x_{3}-5 x_{4} & =0 \\
11 x_{1}-18 x_{2}+2 x_{3}+9 x_{4} & =0 .
\end{aligned}
$$

3. Let $\mathbf{A}=2 \mathbf{i}+\mathbf{j}-3 \mathbf{k}, \mathbf{B}=7 \mathbf{i}-2 \mathbf{j}+4 \mathbf{k}$, and $\mathbf{C}=4 \mathbf{i}+5 \mathbf{k}$.

Find the triple scalar products (a) $(\mathbf{A} \times \mathbf{B}) \cdot \mathbf{C}$, (b) $\mathbf{A} \cdot(\mathbf{C} \times \mathbf{B})$, (c) $\mathbf{B} \cdot(\mathbf{C} \times \mathbf{A})$.
Find the triple vector products (d) $(\mathbf{A} \times \mathbf{B}) \times \mathbf{C}$, (e) $\mathbf{A} \times(\mathbf{B} \times \mathbf{C})$.
4. Three vectors \mathbf{A}, \mathbf{B}, and \mathbf{C} are linearly dependent if it is possible to write one of the vectors as a linear combination of the other two, for example, $\mathbf{A}=p \mathbf{B}+q \mathbf{C}$.

Three vectors are linearly independent if it is not possible to do this.
More generally, we say that a set of vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ is linearly dependent if there exists numbers $c_{1}, c_{2}, \ldots, c_{n}$ not all equal to zero such that $c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{n} \mathbf{x}_{n}=\mathbf{0}$ (which, of course implies that one of the vectors with a non-zero coefficient can be written as a linear combination of (a subset of) the other vectors.

The set of vectors is linearly independent if $c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{n} \mathbf{x}_{n}=\mathbf{0}$ implies all coefficients are zero, $c_{1}=c_{2}=\cdots c_{n}$.
(a) Show that the vectors $\mathbf{A}, \mathbf{B}, \mathbf{C}$ defined in question 3 are linearly independent.
(b) What does linear dependence or independence imply about the determinant formed from the components of the three vectors?
(c) Redefine $\mathbf{A}=(2+\alpha) \mathbf{i}+\mathbf{j}-3 \mathbf{k}$. What value of α makes $\mathbf{A}, \mathbf{B}, \mathbf{C}$ linearly dependent?
5. Show the identity $\mathbf{A} \times(\mathbf{B} \times \mathbf{C})+\mathbf{B} \times(\mathbf{C} \times \mathbf{A})+\mathbf{C} \times(\mathbf{A} \times \mathbf{B})=0$ for any three vectors \mathbf{A}, \mathbf{B}, and C. [HINT: Use the formula at the bottom of Fact Sheet 9.]

