Problems for Lecture 12 Singular Matrices and Linear Equations

1. Which of the following matrices are non-singular? For each that is, find the inverse:
(a) $\mathbf{A}_{1}=\left(\begin{array}{cc}0 & 2 \\ -2 & 4\end{array}\right)$,
(b) $\mathbf{A}_{2}=\left(\begin{array}{cc}6 & -4 \\ -3 & 2\end{array}\right)$,
(c) $\mathbf{A}_{3}=\left(\begin{array}{ll}2 & 3 \\ 3 & 5\end{array}\right)$.
2. Which of the following matrices are singular? In those cases where a matrix can be seen by inspection to be singular, give your reasoning.
(a) $\mathbf{B}_{1}=\left(\begin{array}{lll}8 & 6 & 3 \\ 5 & 8 & 4 \\ 5 & 4 & 2\end{array}\right)$,
(b) $\mathbf{B}_{2}=\left(\begin{array}{ccc}0 & 7 & 0 \\ 3 & -5 & 6 \\ 5 & 4 & 2\end{array}\right)$,
(c) $\mathbf{B}_{3}=\left(\begin{array}{ccc}1 & 2 & 1 \\ -2 & 4 & -1 \\ -1 & 14 & 1\end{array}\right)$,
(d) $\mathbf{B}_{4}=\left(\begin{array}{ccc}4 & 4 & 4 \\ 2 & 1 & 2 \\ -1 & -1 & 1\end{array}\right)$,
(e) $\mathbf{B}_{5}=\left(\begin{array}{cccc}3.5 & -7.2 & 2.1 & 4.4 \\ 5.3 & 6.2 & 0 & -6.2 \\ 3.5 & -7.2 & 2.1 & 4.4 \\ 1.7 & 0 & -5.3 & 0\end{array}\right)$,
(f) $\mathbf{B}_{6}=\left(\begin{array}{cccc}3 & -5 & 0 & -1 \\ 2 & 1 & 7 & 4 \\ 0 & 6 & -4 & 2\end{array}\right)$.
3. Consider the system of linear equations of 3 equations with 3 unknowns x_{1}, x_{2}, x_{3} :

$$
\begin{aligned}
-x_{1}+2 x_{2}+3 x_{3} & =k_{1} \\
2 x_{1}+x_{2}-4 x_{3} & =k_{2} \\
-x_{1}-2 x_{2}+x_{3} & =k_{3}
\end{aligned} \Leftrightarrow \mathbf{A x}=\mathbf{k}
$$

Write down the matrix of the coefficients \mathbf{A} and find in sequence
(a) the determinant $\operatorname{det} \mathbf{A}$,
(b) the matrix of the cofactors \mathbf{C},
(c) the adjoint matrix $\operatorname{adj} \mathbf{A}$,
(d) the inverse \mathbf{A}^{-1},
(e) the general solution to the system of linear equations.

Check that $\mathbf{A A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}$ where \mathbf{I} is the 3×3 identity matrix.
4. Obtain the solution of the equations in question 3 for the following values of \mathbf{k} :
(a) $\mathbf{k}=\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$,
(b) $\mathbf{k}=\left(\begin{array}{c}5 \\ -8 \\ 0\end{array}\right)$,
(c) $\mathbf{k}=\left(\begin{array}{l}3 \\ 4 \\ 5\end{array}\right)$.
5. Find the determinant of the matrix $\mathbf{D}=\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 5 & 7 & 5 & 5 \\ -1 & 3 & 2 & -1 \\ 3 & -2 & 5 & 4\end{array}\right)$.

