Problems for Lecture 11: Matrices I

1. Find the matrix products:
(a) $\left(\begin{array}{ll}1 & 2\end{array}\right)\binom{5}{6}$,
(b) $\left(\begin{array}{ll}3 & 4\end{array}\right)\binom{5}{6}$,
(c) $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)\binom{5}{6}$,
(d) $\binom{5}{6}\left(\begin{array}{ll}1 & 2\end{array}\right)$,
(e) $\left(\begin{array}{llll}1 & -3 & 5 & -7\end{array}\right)\left(\begin{array}{l}8 \\ 6 \\ 4 \\ 2\end{array}\right)$,
(f) $\left(\begin{array}{l}8 \\ 6 \\ 4 \\ 2\end{array}\right)\left(\begin{array}{llll}1 & -3 & 5 & 7\end{array}\right)$.
2. (a) Write down the 2×2 rotation matrices $\mathbf{R}_{+45^{\circ}}, \mathbf{R}_{+90^{\circ}}$, representing 45° and 90° anticlockwise (counter-clockwise) rotations, respectively.
(b) Show that the product of two 45° anti-clockwise rotation matrices is equivalent to a single 90° anti-clockwise rotation matrix, that is, $\mathbf{R}_{+45^{\circ}} \mathbf{R}_{+45^{\circ}}=\mathbf{R}_{+90^{\circ}}$.
(c) What does the product $\mathbf{R}_{+90^{\circ}} \mathbf{R}_{+90^{\circ}}=\mathbf{R}_{+90^{\circ}}^{2}$ of two 90° anti-clockwise rotation matrices correspond to? What does the product $\mathbf{R}_{-90^{\circ}} \mathbf{R}_{-90^{\circ}}=\mathbf{R}_{-90^{\circ}}^{2}$ of two 90° clockwise rotation matrices correspond to?
3. (a) Write down the 2×2 matrix $\mathbf{R}_{-|\theta|}$ representing a clockwise rotation of axes by an angle of $\theta=\sin ^{-1}(4 / 5)$. Express θ in degrees.
(b) If the clockwise rotation in 3(a) is followed by an anti-clockwise rotation of 45°, find the matrix $\mathbf{R}_{\text {net }}$ representing the net rotation. From the nature of the matrix, deduce whether the net rotation is clockwise or anti-clockwise.
(c) Show that the order of the two axes rotations in parts (a) and (b) is irrelevant.
(d) Deduce the inverse of the matrix $\mathbf{R}_{\text {net }}$.
4. Evaluate the determinants (a) $\operatorname{det} \mathbf{A}=\left|\begin{array}{cccc}4 & 0 & 0 & 0 \\ 6 & -1 & 0 & 0 \\ 5 & 4 & 3 & 0 \\ 3 & 2 & 1 & 2\end{array}\right|$, (b) $\operatorname{det} \mathbf{B}=\left|\begin{array}{cccc}4 & 0 & 1 & 0 \\ 6 & -1 & 0 & 0 \\ 5 & 4 & 3 & 0 \\ 3 & 2 & 1 & 2\end{array}\right|$.
