Problems for Lecture 10: Answers

(a) $3 \mathbf{A}=3\left(\begin{array}{ll}2 & 3 \\ 4 & 6\end{array}\right)=\left(\begin{array}{cc}6 & 9 \\ 12 & 18\end{array}\right)$,

1. (b) $\mathbf{A}+\mathbf{B}=\left(\begin{array}{ll}2 & 3 \\ 4 & 6\end{array}\right)+\left(\begin{array}{cc}2 & -1 \\ 5 & 4\end{array}\right)=\left(\begin{array}{cc}4 & 2 \\ 9 & 10\end{array}\right)$,
(c) $3 \mathbf{B}-2 \mathbf{C}=3\left(\begin{array}{cc}2 & -1 \\ 5 & 4\end{array}\right)-2\left(\begin{array}{cc}-4 & 2 \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}6 & -3 \\ 15 & 12\end{array}\right)+\left(\begin{array}{ll}8 & -4 \\ 0 & -2\end{array}\right)=\left(\begin{array}{ll}14 & -7 \\ 15 & 10\end{array}\right)$.
2. (a) $\mathbf{r}_{1}=\left(\begin{array}{ll}2 & 3 \\ 4 & 6\end{array}\right)\binom{3}{4}=\binom{2 \cdot 3+3 \cdot 4}{4 \cdot 3+6 \cdot 4}=\binom{18}{36}$,
(b) $\mathbf{r}_{2}=\left(\begin{array}{cc}2 & -1 \\ 5 & 4\end{array}\right)\binom{3}{4}=\binom{2 \cdot 3+(-1) \cdot 4}{5 \cdot 3+4 \cdot 4}=\binom{2}{31}$,
(c) $\mathbf{r}_{3}=\mathbf{r}_{1}+\mathbf{r}_{2}=\binom{18}{36}+\binom{2}{31}=\binom{20}{67}$,
(d) $\mathbf{r}_{4}=\left(\begin{array}{cc}4 & 2 \\ 9 & 10\end{array}\right)\binom{3}{4}=\binom{4 \cdot 3+2 \cdot 4}{9 \cdot 3+10 \cdot 4}=\binom{20}{67}$.

The transformation effected by the sum of the two matrices $(\mathbf{A}+\mathbf{B})$ is the same as the sum of the two transformations \mathbf{A} and \mathbf{B}.

Let $\mathbf{A}=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right), \mathbf{B}=\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right)$. Then $\mathbf{A r}=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)\binom{x}{y}=\binom{a_{11} x+a_{12} y}{a_{21} x+a_{22} y}$ and
$\mathbf{B r}=\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right)\binom{x}{y}=\binom{b_{11} x+b_{12} y}{b_{21} x+b_{22} y}$ so that
$\mathbf{A r}+\mathbf{B r}=\binom{a_{11} x+a_{12} y+b_{11} x+b_{12} y}{a_{21} x+a_{22} y+b_{21} x+b_{22} y}$, using the property of matrix addition $=\binom{\left(a_{11}+b_{11}\right) x+\left(a_{12}+b_{12}\right) y}{\left(a_{21}+b_{21}\right) x+\left(a_{22}+b_{22}\right) y}$, using the property for real numbers $=\left(\begin{array}{ll}a_{11}+b_{11} & a_{12}+b_{12} \\ a_{21}+b_{21} & a_{22}+b_{22}\end{array}\right)\binom{x}{y}$, using then definition of matrix multiplication $=\left(\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)+\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right)\right)\binom{x}{y}$, using the definition of matrix addition $=(\mathbf{A}+\mathbf{B}) \mathbf{r}$.
3. (a) $\quad \mathbf{A B}=\left(\begin{array}{cc}2 & 3 \\ 4 & 6\end{array}\right)\left(\begin{array}{cc}2 & -1 \\ 5 & 4\end{array}\right)=\left(\begin{array}{ll}2 \cdot 2+3 \cdot 5 & 2 \cdot(-1)+3 \cdot 4 \\ 4 \cdot 2+6 \cdot 5 & 4 \cdot(-1)+6 \cdot 4\end{array}\right)=\left(\begin{array}{ll}19 & 10 \\ 38 & 20\end{array}\right)$,
(b) $\quad \mathbf{B C}=\left(\begin{array}{cc}2 & -1 \\ 5 & 4\end{array}\right)\left(\begin{array}{cc}-4 & 2 \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}2 \cdot(-4)+(-1) \cdot 0 & 2 \cdot 2+(-1) \cdot 1 \\ 5 \cdot(-4)+4 \cdot 0 & 5 \cdot 2+4 \cdot 1\end{array}\right)=\left(\begin{array}{cc}-8 & 3 \\ -20 & 14\end{array}\right)$,
(c) $\quad \mathbf{C B}=\left(\begin{array}{cc}-4 & 2 \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}2 & -1 \\ 5 & 4\end{array}\right)=\left(\begin{array}{cc}(-4) \cdot 2+2 \cdot 5 & (-4) \cdot(-1)+2 \cdot 4 \\ 0 \cdot 2+1 \cdot 5 & 0 \cdot(-1)+1 \cdot 4\end{array}\right)=\left(\begin{array}{cc}2 & 12 \\ 5 & 4\end{array}\right)$,
(d) $\quad \mathbf{A C}=\left(\begin{array}{ll}2 & 3 \\ 4 & 6\end{array}\right)\left(\begin{array}{cc}-4 & 2 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}2 \cdot(-4)+3 \cdot 0 & 2 \cdot 2+3 \cdot 1 \\ 4 \cdot(-4)+6 \cdot 0 & 4 \cdot 2+6 \cdot 1\end{array}\right)=\left(\begin{array}{cc}-8 & 7 \\ -16 & 14\end{array}\right)$,
(e) $\quad(\mathbf{A B}) \mathbf{C}=\left(\begin{array}{ll}19 & 10 \\ 38 & 20\end{array}\right)\left(\begin{array}{cc}-4 & 2 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}19 \cdot(-4)+10 \cdot 0 & 19 \cdot 2+10 \cdot 1 \\ 38 \cdot(-4)+20 \cdot 0 & 38 \cdot 2+20 \cdot 1\end{array}\right)=\left(\begin{array}{cc}-76 & 48 \\ -152 & 96\end{array}\right)$,
(f)

$$
\mathbf{A}(\mathbf{B C})=\left(\begin{array}{ll}
2 & 3 \\
4 & 6
\end{array}\right)\left(\begin{array}{cc}
-8 & 3 \\
-20 & 14
\end{array}\right)=\left(\begin{array}{ll}
2 \cdot(-8)+3 \cdot(-20) & 2 \cdot 3+3 \cdot 14 \\
4 \cdot(-8)+6 \cdot(-20) & 4 \cdot 3+6 \cdot 14
\end{array}\right)=\left(\begin{array}{cc}
-76 & 48 \\
-152 & 96
\end{array}\right)
$$

(g)
$(\mathbf{A}+\mathbf{B}) \mathbf{C}=\left(\begin{array}{cc}4 & 2 \\ 9 & 10\end{array}\right)\left(\begin{array}{cc}-4 & 2 \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}4 \cdot(-4)+2 \cdot 0 & 4 \cdot 2+2 \cdot 1 \\ 9 \cdot(-4)+10 \cdot 0 & 9 \cdot 2+10 \cdot 1\end{array}\right)=\left(\begin{array}{ll}-16 & 10 \\ -36 & 28\end{array}\right)$,
(h) $\quad \mathbf{A C}+\mathbf{B C}=\left(\begin{array}{cc}-8 & 7 \\ -16 & 14\end{array}\right)+\left(\begin{array}{cc}-8 & 3 \\ -20 & 14\end{array}\right)=\left(\begin{array}{cc}-16 & 10 \\ -36 & 28\end{array}\right)$.

These special cases illustrate general properties of matrix manipulation,
Matrix multiplication is associative $(\mathbf{A B}) \mathbf{C}=\mathbf{A}(\mathbf{B C})((\mathrm{e})$ and (f)).
Matrix multiplication is distributive ($\mathbf{A}+\mathbf{B}) \mathbf{C}=\mathbf{A C}+\mathbf{B C}(\mathrm{g})$ and (h))
Matrix multiplication is not, in general, commutative $\mathbf{B C} \neq \mathbf{C B}$ (b) and (c)).

Matrix multiplication is only defined between matrices \mathbf{A} and \mathbf{B} if the number of columns in the matrix \mathbf{A} equals the number of rows in the matrix \mathbf{B}. For example, if \mathbf{A} is an $m \times p$ matrix and \mathbf{B} is a $p \times n$ matrix, the matrix product is well-defined and $\mathbf{A B}$ is an $m \times n$ matrix. Note that $\mathbf{B A}$ is not well-defined unless $n=m$ in which case $\mathbf{B A}$ is a $p \times p$ matrix. \mathbf{P} is a 2×4 matrix, \mathbf{Q} is a 3×2 matrix, and \mathbf{R} is a 3×3 matrix. Hence only $\mathbf{Q P}$ (a 3×4 matrix), $\mathbf{R Q}$ (a 3×3 matrix), and $\mathbf{R R}=\mathbf{R}^{2}$ (a 3×3 matrix) are well-defined. All other combinations are meaningless. We find:
5. Define the inverse matrix $\mathbf{A}^{-1}=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$. This matrix must satisfy $\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}$ and $\mathbf{A} \mathbf{A}^{-1}=\mathbf{I}$. The first equation implies $\mathbf{A A}^{-1}=\mathbf{I} \Leftrightarrow\left(\begin{array}{cc}9 & 6 \\ 5 & 3\end{array}\right)\left(\begin{array}{cc}a_{11} & a_{12} \\ {\underset{\sim}{2}}^{a_{21}} & {\underset{\sim}{a}}_{22}\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)$ which is equivalent of a system of 4 equations with 4 unknowns (actually 2×2 Eqs. With 2 unknowns):

$$
\begin{aligned}
& 9{\underset{a}{11}}+6{\underset{21}{21}}=1 \\
& 5 a_{11}+3 a_{21}=0 \\
& 9{\underset{\sim}{12}}+6{\underset{a}{22}}=0 \text { These are solve, for example by using Cramer's rule: } \\
& 5{\underset{\sim 1}{ }}^{2}+3{\underset{\sim}{2}}^{2}=1
\end{aligned}
$$

$$
a_{11}=\frac{\left|\begin{array}{ll}
1 & 6 \\
0 & 3
\end{array}\right|}{\left|\begin{array}{ll}
9 & 6 \\
5 & 3
\end{array}\right|}=\frac{3}{-3}=-1 ; a_{21}=\frac{\left|\begin{array}{ll}
9 & 1 \\
5 & 0
\end{array}\right|}{\left|\begin{array}{ll}
9 & 6 \\
5 & 3
\end{array}\right|}=\frac{-5}{-3}=\frac{5}{3} ; a_{12}=\frac{\left|\begin{array}{ll}
0 & 6 \\
1 & 3
\end{array}\right|}{\left|\begin{array}{ll}
9 & 6 \\
5 & 3
\end{array}\right|}=\frac{-6}{-3}=2 ; a_{22}=\frac{\left|\begin{array}{ll}
9 & 0 \\
5 & 1
\end{array}\right|}{\left|\begin{array}{ll}
9 & 6 \\
5 & 3
\end{array}\right|}=\frac{9}{-3}=-3 .
$$

$$
\begin{aligned}
& \mathbf{Q P}=\left(\begin{array}{cc}
2 & 4 \\
1 & -1 \\
3 & -1
\end{array}\right)\left(\begin{array}{cccc}
2 & 3 & 1 & -4 \\
2 & 1 & 0 & 5
\end{array}\right)=\left(\begin{array}{cccc}
2 \cdot 2+4 \cdot 2 & 2 \cdot 3+4 \cdot 1 & 2 \cdot 1+4 \cdot 0 & 2 \cdot(-4)+4 \cdot 5 \\
1 \cdot 2+(-1) \cdot 2 & 1 \cdot 3+(-1) \cdot 1 & 1 \cdot 1+(-1) \cdot 0 & 1 \cdot(-4)+(-1) \cdot 5 \\
3 \cdot 2+(-1) \cdot 2 & 3 \cdot 3+(-1) \cdot 1 & 3 \cdot 1+(-1) \cdot 0 & 3 \cdot(-4)+(-1) \cdot 5
\end{array}\right) \\
& =\left(\begin{array}{cccc}
12 & 10 & 2 & 12 \\
0 & 2 & 1 & -9 \\
4 & 8 & 3 & -17
\end{array}\right) \\
& \mathbf{R} \mathbf{Q}=\left(\begin{array}{ccc}
2 & 1 & 3 \\
4 & -1 & -2 \\
-1 & 0 & 1
\end{array}\right)\left(\begin{array}{cc}
2 & 4 \\
1 & -1 \\
3 & -1
\end{array}\right)=\left(\begin{array}{cc}
2 \cdot 2+1 \cdot 1+3 \cdot 3 & 2 \cdot 4+1 \cdot(-1)+3 \cdot(-1) \\
4 \cdot 2+(-1) \cdot 1+(-2) \cdot 3 & 4 \cdot 4+(-1) \cdot(-1)+(-2) \cdot(-1) \\
(-1) \cdot 2+0 \cdot 1+1 \cdot 3 & (-1) \cdot 4+0 \cdot(-1)+1 \cdot(-1)
\end{array}\right)=\left(\begin{array}{cc}
14 & 4 \\
1 & 19 \\
1 & -5
\end{array}\right) \\
& \mathbf{R}^{2}=\left(\begin{array}{ccc}
2 & 1 & 3 \\
4 & -1 & -2 \\
-1 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
2 & 1 & 3 \\
4 & -1 & -2 \\
-1 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
2 \cdot 2+1 \cdot 4+3 \cdot(-1) & 2 \cdot 1+1 \cdot(-1)+3 \cdot 0 & 2 \cdot 3+1 \cdot(-2)+3 \cdot 1 \\
4 \cdot 2+(-1) \cdot 4+(-2) \cdot(-1) & 4 \cdot 1+(-1) \cdot(-1)+(-2) \cdot 0 & 4 \cdot 3+(-1) \cdot(-2)+(-2) \cdot 1 \\
(-1) \cdot 2+0 \cdot 4+1 \cdot(-1) & (-1) \cdot 1+0 \cdot(-1)+1 \cdot 0 & (-1) \cdot 3+0 \cdot(-2)+1 \cdot 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
5 & 1 & 7 \\
6 & 5 & 12 \\
-3 & -1 & -2
\end{array}\right) \text {. }
\end{aligned}
$$

We check that $\left(\begin{array}{cc}-1 & 2 \\ \frac{5}{3} & -3\end{array}\right)\left(\begin{array}{ll}9 & 6 \\ 5 & 3\end{array}\right)=\left(\begin{array}{ll}9 & 6 \\ 5 & 3\end{array}\right)\left(\begin{array}{cc}-1 & 2 \\ \frac{5}{3} & -3\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, confirming that indeed the inverse matrix is $\mathbf{A}^{-1}=\left(\begin{array}{cc}-1 & 2 \\ \frac{5}{3} & -3\end{array}\right)$.
6. Applying the matrix $\mathbf{R}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ to a vector \mathbf{r} rotates it through an angle of θ counter-clock wise. Hence
$\mathbf{R r}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)\binom{3}{4}=\binom{3 \cos \theta-4 \sin \theta}{3 \sin \theta+4 \cos \theta}=\binom{\frac{3}{2}-2 \sqrt{3}}{3 \frac{\sqrt{3}}{2}+2} \approx\binom{-1.964}{4.598}$ for $\theta=60^{\circ}$.
7.
(a) $3 \mathbf{M}=3\left(\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right)=\left(\begin{array}{cc}12 & 3 \\ 9 & 6\end{array}\right)$,
(b) $\operatorname{det} \mathbf{M}=\left|\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right|=4 \cdot 2-3 \cdot 1=5$,
(c) $\operatorname{det}(3 \mathbf{M})=\left|\begin{array}{cc}12 & 3 \\ 9 & 6\end{array}\right|=12 \cdot 6-9 \cdot 3=45=3^{2} \cdot 5$.

A determinant is multiplied by a factor r if all elements of one row (or column) are multiplied by r (see property 2, Fact Sheet 6). Therefore, if all elements of all n rows are multiplied by r, which is what happens if the parent matrix is multiplied by a factor r, the determinant will be multiplied by r^{n}, that is, if \mathbf{A} is an $n \times n$ matrix, then $\operatorname{det} r \mathbf{A}=r^{n} \operatorname{det} \mathbf{A}$.

