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Problems for Lecture 10: Answers 
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The transformation effected by the sum of the two matrices ( )+A B is the same as the 

sum of the two transformations  and . A B
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These special cases illustrate general properties of matrix manipulation, 

Matrix multiplication is associative ( ) (=AB C A BC)  ((e) and (f)). 

Matrix multiplication is distributive ( )+ = +A B C AC BC  ((g) and (h)) 

Matrix multiplication is not, in general, commutative ≠BC CB  ((b) and (c)). 

   

4. Matrix multiplication is only defined between matrices  A  and B  if the number of 

columns in the matrix A  equals the number of rows in the matrix B . For example, if 

A  is an m p×  matrix and B  is a p n×  matrix, the matrix product is well-defined and 

AB  is an m n×  matrix. Note that BA  is not well-defined unless n m=  in which 

case BA  is a p p×  matrix. P  is a 2 4×  matrix, Q  is a 3 2×  matrix, and R  is a 3 3×  

matrix. Hence only QP   (a 3 4×  matrix), RQ  (a 3 3×  matrix), and 2= R  (a 3 3RR ×  

matrix) are well-defined. All other combinations are meaningless. We find:  
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5. Define the inverse matrix  This matrix must satisfy  and 

. The first equation implies  which is 

equivalent of a system of 4 equations with 4 unknowns (actually 2 ×  2 Eqs. With 2 

unknowns): 

 These are solve, for example by using Cramer’s rule: 

11 21 12 22

1 6 9 1 0 6 9 0
0 3 5 0 1 3 5 13 5 5 61;  ;  2;  3.
9 6 9 6 9 6 9 63 3 3 3
5 3 5 3 5 3 5 3

a a a a− −
= = = − = = = = = = = = =

− − −
9
3

−
−
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We check that 
1 2 1 29 6 9 6 1 0

5 55 3 5 3 0 13 3
3 3
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, confirming that indeed 

the inverse matrix is 1
5
3

1 2
.

3
− −⎛ ⎞
= ⎜ ⎟−⎝ ⎠

A  

  

6. Applying the matrix 
cos sin
sin cos

θ θ
θ θ

−⎛ ⎞
= ⎜ ⎟
⎝ ⎠

R  to a vector r  rotates it through an angle of 

θ  counter-clock wise. Hence  

3 2 3
cos sin 3 3cos 4sin

4 3sin 4cos
θ
θ
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= =⎜ ⎟⎜ ⎟ ⎜ +⎝ ⎠⎝ ⎠ ⎝

-1.9642
sin cos 4.598

3 2
2

θ θ θ
θ θ θ
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7.  (a)     (b) 
4 1 12 3

3 3
3 2 9 6
⎛ ⎞ ⎛

= =⎜ ⎟ ⎜
⎝ ⎠ ⎝

M
4 1

det 4 2 3 1 5,
3 2

= = ⋅ − ⋅ =M  

  (c)  212 3
det(3 ) 12 6 9 3 45 3 5.

9 6
= = ⋅ − ⋅ = =M ⋅  

 A determinant is multiplied by a factor r  if all elements of one row (or column) are 
multiplied by  (see property 2, Fact Sheet 6).   Therefore, if all elements of r all n rows 
are multiplied by , which is what happens if the parent matrix is multiplied by a factor 

, the determinant will be multiplied by , that is, if  is an  matrix, then 
. 

r
r
det

nr A n n×
denr r= tA A
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