Problems for Lecture 10: Matrices I

In questions 1-3, the 2×2 matrices **A**, **B** and **C** are

$$\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 4 & 6 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 2 & -1 \\ 5 & 4 \end{pmatrix}, \quad \mathbf{C} = \begin{pmatrix} -4 & 2 \\ 0 & 1 \end{pmatrix}.$$

1. Find the matrices given by (a) $3\mathbf{A}$, (b) $\mathbf{A} + \mathbf{B}$, (c) $3\mathbf{B} - 2\mathbf{C}$.

2. If a column vector (2×1 matrix) is represented by $\mathbf{r} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$,

find (a) $\mathbf{r}_1 = \mathbf{A}\mathbf{r}$, (b) $\mathbf{r}_2 = \mathbf{B}\mathbf{r}$, (c) $\mathbf{r}_3 = \mathbf{r}_1 + \mathbf{r}_2$. (d) $\mathbf{r}_4 = (\mathbf{A} + \mathbf{B})\mathbf{r}$. Explain the property that implies that $\mathbf{r}_3 = \mathbf{r}_4$. Prove that property in general for 2×2

matrices and
$$\mathbf{r} = \begin{pmatrix} x \\ y \end{pmatrix}$$
.

- 3. Find the matrix products:
 - (a) AB, (b) BC, (c) CB, (d) AC, (e) (AB)C, (f) A(BC), (g) (A+B)C, (h) AC+BC.
- 4. If the matrices $\mathbf{P} = \begin{pmatrix} 2 & 3 & 1 & -4 \\ 2 & 1 & 0 & 5 \end{pmatrix}$, $\mathbf{Q} = \begin{pmatrix} 2 & 4 \\ 1 & -1 \\ 3 & -1 \end{pmatrix}$, $\mathbf{R} = \begin{pmatrix} 2 & 1 & 3 \\ 4 & -1 & -2 \\ -1 & 0 & 1 \end{pmatrix}$, either

calculate, or discard as meaningless, all nine potential products of two of the matrices.

5. Find the inverse \mathbf{A}^{-1} of the 2×2 matrix $\mathbf{A} = \begin{pmatrix} 9 & 6 \\ 5 & 3 \end{pmatrix}$ using "brut force" calculation.

6. Find the vector resulting from the counter-clockwise rotation of $\mathbf{r} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ in question 2 by 60° and 90°, respectively.

j i i i i i j i r

7. If
$$\mathbf{M} = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}$$
, evaluate (a) 3**M**, (b) det **M**, (c) det(3**M**).

Show in general that, if **M** is an $n \times n$ matrix, then $det(r\mathbf{M}) = r^n det \mathbf{M}$, where *r* is a factor. (Reminder: When a matrix is multiplied by a factor *r*, all elements of the matrix are multiplied by the factor *r*, i.e., if m_{ij} is the *ij* th element of the matrix **M**, then the *ij* th element of the matrix *r***M** is rm_{ij} .)