Problems for Lecture 10: Matrices I

In questions 1-3, the 2×2 matrices \mathbf{A}, \mathbf{B} and \mathbf{C} are

$$
\mathbf{A}=\left(\begin{array}{ll}
2 & 3 \\
4 & 6
\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{cc}
2 & -1 \\
5 & 4
\end{array}\right), \quad \mathbf{C}=\left(\begin{array}{cc}
-4 & 2 \\
0 & 1
\end{array}\right)
$$

1. Find the matrices given by (a) $3 \mathbf{A}$,
(b) $\mathbf{A}+\mathbf{B}$,
(c) $3 \mathbf{B}-2 \mathbf{C}$.
2. If a column vector (2×1 matrix) is represented by $\mathbf{r}=\binom{3}{4}$,
find (a) $\mathbf{r}_{1}=\mathbf{A r}$,
(b) $\mathbf{r}_{2}=\mathbf{B r}$,
(c) $\mathbf{r}_{3}=\mathbf{r}_{1}+\mathbf{r}_{2}$.
(d) $\mathbf{r}_{4}=(\mathbf{A}+\mathbf{B}) \mathbf{r}$.

Explain the property that implies that $\mathbf{r}_{3}=\mathbf{r}_{4}$. Prove that property in general for 2×2 matrices and $\mathbf{r}=\binom{x}{y}$.
3. Find the matrix products:
(a) $\mathbf{A B}$,
(b) $\mathbf{B C}$,
(c) $\mathbf{C B}$,
(d) AC,
(e) $(\mathbf{A B}) \mathbf{C}$,
(f) $\mathbf{A}(\mathbf{B C})$,
(g) $(\mathbf{A}+\mathbf{B}) \mathbf{C}$,
(h) $\mathbf{A C}+\mathbf{B C}$.
4. If the matrices $\mathbf{P}=\left(\begin{array}{cccc}2 & 3 & 1 & -4 \\ 2 & 1 & 0 & 5\end{array}\right), \quad \mathbf{Q}=\left(\begin{array}{cc}2 & 4 \\ 1 & -1 \\ 3 & -1\end{array}\right), \quad \mathbf{R}=\left(\begin{array}{ccc}2 & 1 & 3 \\ 4 & -1 & -2 \\ -1 & 0 & 1\end{array}\right)$, either calculate, or discard as meaningless, all nine potential products of two of the matrices.
5. Find the inverse \mathbf{A}^{-1} of the 2×2 matrix $\mathbf{A}=\left(\begin{array}{ll}9 & 6 \\ 5 & 3\end{array}\right)$ using "brut force" calculation.
6. Find the vector resulting from the counter-clockwise rotation of $\mathbf{r}=\binom{3}{4}$ in question 2 by 60° and 90°, respectively.
7. If $\mathbf{M}=\left(\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right)$, evaluate (a) $3 \mathbf{M}, \quad$ (b) $\operatorname{det} \mathbf{M}$, (c) $\operatorname{det}(3 \mathbf{M})$.

Show in general that, if \mathbf{M} is an $n \times n$ matrix, then $\operatorname{det}(r \mathbf{M})=r^{n} \operatorname{det} \mathbf{M}$, where r is a factor. (Reminder: When a matrix is multiplied by a factor r, all elements of the matrix are multiplied by the factor r, i.e., , if $m_{i j}$ is the $i j$ th element of the matrix \mathbf{M}, then the $i j$ th element of the matrix $r \mathbf{M}$ is $r m_{i j}$.)

