Fact Sheet 9 - Vectors II: Triple Products

Triple Scalar Product

- The triple scalar product, so called because three vectors are involved and the answer is a scalar quantity, is defined as
$\mathbf{c} \cdot(\mathbf{a} \times \mathbf{b})$.
- In terms of components, this reads

$$
\begin{aligned}
\mathbf{c} \cdot(\mathbf{a} \times \mathbf{b}) & =\mathbf{c} \cdot\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z}
\end{array}\right| \\
& =c_{x}\left(a_{y} b_{z}-a_{z} b_{y}\right)-c_{y}\left(a_{x} b_{z}-a_{z} b_{x}\right)+c_{z}\left(a_{x} b_{y}-a_{y} b_{x}\right) \\
& =\left|\begin{array}{lll}
c_{x} & a_{x} & b_{x} \\
c_{y} & a_{y} & b_{y} \\
c_{z} & a_{z} & b_{z}
\end{array}\right|=\operatorname{det}(\mathbf{c}, \mathbf{a}, \mathbf{b})
\end{aligned}
$$

that is, the determinant of the 3×3 matrix whit columns \mathbf{c}, \mathbf{a}, and \mathbf{b}, respectively

- Note that $\left|\begin{array}{lll}c_{x} & a_{x} & b_{x} \\ c_{y} & a_{y} & b_{y} \\ c_{z} & a_{z} & b_{z}\end{array}\right|=\left|\begin{array}{lll}a_{x} & b_{x} & c_{x} \\ a_{y} & b_{y} & c_{y} \\ a_{z} & b_{z} & c_{z}\end{array}\right|=\left|\begin{array}{lll}b_{x} & c_{x} & a_{x} \\ b_{y} & c_{y} & a_{y} \\ b_{z} & c_{z} & a_{z}\end{array}\right|$ since each successive determinant results from two column exchanges. Consequently,
$\mathbf{c} \cdot(\mathbf{a} \times \mathbf{b})=\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\mathbf{b} \cdot(\mathbf{c} \times \mathbf{a})=\mathbf{(a} \times \mathbf{b}) \cdot \mathbf{c}=\mathbf{(b} \times \mathbf{c}) \cdot \mathbf{a}=(\mathbf{c} \times \mathbf{a}) \cdot \mathbf{b}$.
so all triple scalar products where the same vectors are rotated in cyclic order are equal. This is irrespective of the order of the dot and cross product.
The sign reverses when the vectors are not in cyclic order although the magnitude is unchanged. So $\mathbf{c} \bullet(\mathbf{a} \times \mathbf{b})=-\mathbf{c} \cdot(\mathbf{b} \times \mathbf{a})$ but $|\mathbf{c} \cdot(\mathbf{a} \times \mathbf{b})|=|\mathbf{c} \cdot(\mathbf{b} \times \mathbf{a})|$.
- The magnitude $|\operatorname{det}(\mathbf{c}, \mathbf{a}, \mathbf{b})|$ of the triple scalar product is the volume of a parallelepiped whose sides are the vectors $\mathbf{a , b}$, and \mathbf{c}.

Triple Vector Product

- The triple vector product, so called because three vectors are involved and the result is a vector quantity, is defined as
$\mathbf{e}=\mathbf{a} \times(\mathbf{b} \times \mathbf{c})$
- Bearing in mind that $\mathbf{b} \times \mathbf{c}$ is perpendicular to the plane of \mathbf{b} and \mathbf{c}, and that \mathbf{e} is perpendicular to the plane of \mathbf{a} and $\mathbf{b} \times \mathbf{c}$, one can deduce that \mathbf{e} lies in the plane of \mathbf{b} and c. It follows that \mathbf{e} can be written as a linear combination of \mathbf{b} and \mathbf{c} so that there exists numbers c_{2} and c_{3} such that $\mathbf{e}=c_{2} \mathbf{b}+c_{3} \mathbf{c}$.

It can be shown, with a large piece of paper and some patience, that $c_{2}=\mathbf{a} \cdot \mathbf{c}$ and $c_{3}=-\mathbf{a} \cdot \mathbf{b}$. Therefore, we have the very useful identity
$\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=\mathbf{b}(\mathbf{a} \cdot \mathbf{c})-\mathbf{c}(\mathbf{a} \cdot \mathbf{b})$, commonly known as the "bac $-\mathbf{c a b}$ " rule.

