Fact Sheet 4 - Directions, Lines and Planes(draft version)

- A vector $\mathbf{d}=(x, y, z)=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ defines a particular direction in \mathbb{R}^{3}. The coefficients x, y, and z are called the direction ratios. With $|\mathbf{d}|=\sqrt{x^{2}+y^{2}+z^{2}}$ a unit vector $\hat{\mathbf{d}}$ defining a particular direction in \mathbb{R}^{3} may be written
$\hat{\mathbf{d}}=\frac{\mathbf{d}}{|\mathbf{d}|}=\frac{x}{|\mathbf{d}|} \mathbf{i}+\frac{y}{|\mathbf{d}|} \mathbf{j}+\frac{z}{|\mathbf{d}|} \mathbf{k}=\cos \alpha \mathbf{i}+\cos \beta \mathbf{j}+\cos \gamma \mathbf{k}=\ell \mathbf{i}+m \mathbf{j}+n \mathbf{k}$
where $\cos \alpha, \cos \beta$, and $\cos \gamma$ or ℓ, m, and n are the direction cosines of $\hat{\mathbf{d}}$ as indicated.
Since $\hat{\mathbf{d}}$ is a unit vector, $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$ or, equivalently, $\ell^{2}+m^{2}+n^{2}=1$. Example: To find the direction cosines of a vector \mathbf{d} that is not a unit vector, divide by its magnitude $|\mathbf{d}|$ to obtain a unit vector $\hat{\mathbf{d}}$ in the same direction. For example, for the vector $\mathbf{d}=2 \mathbf{i}+4 \mathbf{j}+3 \mathbf{k}$, divide by $|\mathbf{d}|=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{29}$ to obtain the unit vector $\hat{\mathbf{d}}=\frac{2}{\sqrt{29}} \mathbf{i}+\frac{4}{\sqrt{29}} \mathbf{j}+\frac{3}{\sqrt{29}} \mathbf{k}$. The coefficients of $\mathbf{d}(2,4,3)$ are the direction ratios, and the coefficients $\left(\frac{2}{\sqrt{29}}, \frac{4}{\sqrt{29}}, \frac{3}{\sqrt{29}}\right)$ of $\hat{\mathbf{d}}$ are the direction cosines.
- \quad The angle θ between two unit vectors can be found using the dot(scalar)-product $\cos \theta=\hat{\mathbf{d}}_{\mathbf{1}} \cdot \hat{\mathbf{d}}_{2}=\ell_{1} \ell_{2}+m_{1} m_{2}+n_{1} n_{2}$.

The angle θ between two arbitrary vectors a and \mathbf{b} with $\hat{\mathbf{a}}=\frac{\mathbf{a}}{|\mathbf{a}|}, \hat{\mathbf{b}}=\frac{\mathbf{b}}{|\mathbf{b}|}$ follows from $\cos \theta=\hat{\mathbf{a}} \cdot \hat{\mathbf{b}}=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}=\frac{a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}}{|\mathbf{a}||\mathbf{b}|}=\frac{a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}}{\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}} \sqrt{b_{x}^{2}+b_{y}^{2}+b_{z}^{2}}}$.

- A line passing through a point R_{0} with position vector \mathbf{r}_{0} in a direction $\hat{\mathbf{d}}$ is given by $\mathbf{r}=\mathbf{r}_{\mathbf{0}}+\lambda \hat{\mathbf{d}}, \lambda \in \mathbb{R}$. This parametric equation for a line is valid in \mathbb{R}^{n}. On component form $x_{i}=x_{0 i}+\lambda d_{i}, i=1,2, \ldots n$. Isolating λ we find $\lambda=\frac{x_{1}-x_{01}}{d_{1}}=\cdots=\frac{x_{n}-x_{0 n}}{d_{n}}$.

Example: Consider \mathbb{R}^{2} with $\mathbf{r}_{0}=\left(x_{0}, y_{0}\right)$ and $\mathbf{d}=\left(d_{x}, d_{y}\right)$. Then the parametric equation on component form is
$x=x_{0}+\lambda d_{x}$ and $y=y_{0}+\lambda d_{y}$. Isolating λ we find $\lambda=\frac{x-x_{0}}{d_{x}}=\frac{y-y_{0}}{d_{y}}$ or, equivalently, $y-y_{0}=\frac{d_{y}}{d_{x}}\left(x-x_{0}\right)$ where $\frac{d_{y}}{d_{x}}$ is the slope of the line.

- The latter form is equivalent with the "well-know" equation of a straight line in 2 D . A line with gradient α and y-axis intercept y_{0} (i.e. $x_{0}=0$) is given by
$y=y_{0}+\alpha x$.

Similarly, a line passing through $\left(x_{0}, y_{0}\right)$ in a direction of a unit vector $\hat{\mathbf{d}}=(\ell, m)$ defined by ℓ and m is given by $\frac{x-x_{0}}{\ell}=\frac{y-y_{0}}{m}$.

A straight through a point \mathbf{a} and with a normal vector $\mathbf{n}=(a, b)$ (the notation is unfortunate - please do not identify a with $|\mathbf{a}| \odot)$ must satisfy the equation $(\mathbf{r}-\mathbf{a}) \cdot \mathbf{n}=0 \Leftrightarrow \mathbf{r} \cdot \mathbf{n}=\mathbf{a} \cdot \mathbf{n}$. Denoting $\mathbf{a} \cdot \mathbf{n}=k$, the line can also be specified in the form
$a x+b y=k$
where a and b are the direction ratios of the normal vector \mathbf{n}, i.e. the vector drawn perpendicular to the line from the origin. Note that $\mathbf{a} \bullet \mathbf{n}$ is the projection of a onto \mathbf{n}. Hence $k=|\mathbf{n}|$. perpendicular distance from the origin to the line $\equiv|\mathbf{n}| p$. Dividing all terms in the equation by $|\mathbf{n}|=\sqrt{a^{2}+b^{2}}$, one obtains
$\underbrace{\frac{a}{\sqrt{a^{2}+b^{2}}}}_{\ell^{\prime}} x+\underbrace{\frac{b}{\sqrt{a^{2}+b^{2}}}}_{m^{\prime}} y=\frac{k}{\sqrt{a^{2}+b^{2}}}=p$
where the coefficients (ℓ^{\prime} and m^{\prime}) of x and y are now the direction cosines of the normal vector, and p on the right hand side is the length of the normal, i.e. the perpendicular distance from the origin to the line. Since the normal is (by definition) perpendicular to the line, it follows that
$(\ell, m) \cdot\left(\ell^{\prime}, m^{\prime}\right)=\ell \ell^{\prime}+m m^{\prime}=0$

- The equation of a plane in 3D through a point A with position vector a and perpendicular to a normal vector \mathbf{n} is
$(\mathbf{r}-\mathbf{a}) \cdot \mathbf{n}=0 \Leftrightarrow \mathbf{r} \cdot \mathbf{n}=\mathbf{a} \cdot \mathbf{n}$. If $\mathbf{n}=(a, b, c)$ and $\mathbf{a} \cdot \boldsymbol{n}=k$ we find
$a x+b y+c z=k$.
Dividing through by the magnitude of the normal vector $|\mathbf{n}|=\sqrt{a^{2}+b^{2}+c^{2}}$ yields

$$
\underbrace{\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}}_{\ell^{\prime}} x+\underbrace{\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}}_{m^{\prime}} y+\underbrace{\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}}_{n^{\prime}} z=\frac{k}{\sqrt{a^{2}+b^{2}+c^{2}}}=p
$$

where, by analogy with the case of a line in 2D above, $\ell^{\prime}, m^{\prime}$ and n^{\prime} are the direction cosines of the normal vector, i.e. the vector drawn normal to the plane from the origin. The parameter p is the length of the normal, i.e. the perpendicular distance from the origin to the plane.

Supplement - Planes

This sheet contains key information about the equations of planes.

The equation of a plane

The equation of a plane is
$a x+b y+c z=k$
If you're unsure why this is the equation of a plane, notice that if two of the variables are specified (say x and y), the equation fixes the third (z in this case). So the equation clearly specifies a surface, and the linearity of the equation ensures that it is a plane surface. Notice also that if you take a section through the surface (say $y=0$, which will give you the intersection of the specified plane with the $x-z$ plane), the resulting equation ($a x+c z=k$) is the equation of a straight line.

Normal to a plane

The vector $\mathbf{n}=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ is normal to the plane. Dividing through by $|\mathbf{n}|=\sqrt{a^{2}+b^{2}+c^{2}}$ gives the associated unit vector as
$\hat{\mathbf{n}}=\underbrace{\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}}_{\ell^{\prime}} \mathbf{i}+\underbrace{\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}}_{m^{\prime}} \mathbf{j}+\underbrace{\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}}_{n^{\prime}} \mathbf{k}$
where $\ell^{\prime}, m^{\prime}$ and n^{\prime} are the direction cosines of the normal to the plane.

Vector equation of a plane

A plane can also be defined by the vector equation

$$
\begin{equation*}
\mathbf{r} \cdot \hat{\mathbf{n}}=p \tag{3}
\end{equation*}
$$

where $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ and p is the perpendicular distance from the origin to the plane. Think of eq.(3) as defining the locus of all points \mathbf{r} that lie on the plane.
Expressed in terms of components, eq.(3) becomes

$$
\begin{equation*}
\ell^{\prime} x+m^{\prime} y+n^{\prime} z=p \tag{4}
\end{equation*}
$$

because $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ and $\hat{\mathbf{n}}=\ell^{\prime} \mathbf{i}+m^{\prime} \mathbf{j}+n^{\prime} \mathbf{k}$. Eq.(4) is very similar to Eq.(1), indeed Eq.(1) can be converted to this form simply by dividing all terms by $|\mathbf{n}|=\sqrt{a^{2}+b^{2}+c^{2}}$ to obtain
$\underbrace{\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}}_{\ell^{\prime}} x+\underbrace{\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}}_{m^{\prime}} y+\underbrace{\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}}_{n^{\prime}} z=\frac{k}{\sqrt{a^{2}+b^{2}+c^{2}}}=p$.

An example

Consider the plane
$2 x+6 y-3 z=14$
From the information provided above, the following properties can immediately be deduced:

- A normal vector to the plane is $\mathbf{n}=(2,6,-3)$ (or any multiple hereof, i.e. $\alpha \mathbf{n}, \alpha \neq 0$).
- The perpendicular distance from the origin to the plane is

$$
p=\frac{14}{\sqrt{2^{2}+6^{2}+3^{2}}}=\frac{14}{7}=2 .
$$

- The unit normal to the plane is $\hat{\mathbf{n}}=\frac{2}{7} \mathbf{i}+\frac{6}{7} \mathbf{j}-\frac{3}{7} \mathbf{k}=\left(\frac{2}{7}, \frac{6}{7},-\frac{3}{7}\right)$ the direction cosines of which are

$$
\ell^{\prime}=2 / 7, m^{\prime}=6 / 7, n^{\prime}=-3 / 7 .
$$

Note that the position vector (with respect to the origin) of the nearest point on the plane is $p \hat{\mathbf{n}}=\frac{4}{7} \mathbf{i}+\frac{12}{7} \mathbf{j}-\frac{6}{7} \mathbf{k}=\left(\frac{4}{7}, \frac{12}{7},-\frac{6}{7}\right)$

It's easy to verify that the coordinates of $p \hat{\mathbf{n}}$ do indeed satisfy the equation $2 x+6 y-3 z=14$. Note that, of course, $p \hat{\mathbf{n}}$ is a multiple of \mathbf{n}.

What happens if the right-hand side of the equation is negative? Suppose, for example, the equation had been
$2 x+6 y-3 z=-14$. Then you should simply multiply the equation with -1 to obtain
$-2 x-6 y+3 z=14$. In this case, the plane lies on the opposite side of the origin and $\hat{\mathbf{n}}$ is now $\hat{\mathbf{n}}=-\frac{2}{7} \mathbf{i}-\frac{6}{7} \mathbf{j}+\frac{3}{7} \mathbf{k}$. Still $p=2$ which leads to $p \hat{\mathbf{n}}=-\frac{4}{7} \mathbf{i}-\frac{12}{7} \mathbf{j}+\frac{6}{7} \mathbf{k}$.

