Fact Sheet 3 – Vectors I

Coordinate System

• A <u>right-handed Cartesian coordinate system</u> is one in which perpendicular x, y, and z axes are oriented such that rotating the axes from x towards y about the z-axis would cause a right-handed thread to advance in the +z direction.

For the axes shown below, the rotation defined above is counter-clockwise and hence, to form a right-handed system, the *z*-axis must come **<u>OUT OF THE PAPER</u>**.

• Cyclic order for the *xyz* coordinates means any sequence of three taken from *x y z x y z*

Hence *xyz*, *yzx*, and *zxy* are in cyclic order, whereas *xzy*, *yxz* and *zyx* are not.

• The three cyclic order sequences can be obtained from the diagram below

ADDITIONAL MATERIAL (USEFUL FOR LATER)

The extension of these ideas to sequences of numbers comes in useful when evaluating determinants

• Sequences of three numbers may be called *even* when they are in cyclic order, and *odd* when they are not. The three even sequences are therefore

123 231 312

• Sequences of four (or more) numbers can also be classified as <u>even</u> or <u>odd</u>. Even sequences are those that can be converted to the basic sequence 1234 by an even number of exchanges. Odd sequences are defined similarly.

Typical even sequences are:	2143	4132	3241
Typical odd sequences are:	3421	1432	2134

Vector Basics

- A *vector* has magnitude and direction, whereas a *scalar* quantity has only magnitude.
- Vectors are written either in boldface type (e.g. A) or (esp. on the board) underlined (e.g. <u>A</u>).
- The component of a vector along one of the coordinate axes (say x) is written A_x .
- The <u>magnitude</u> of a vector, associated with the length of the arrow in a diagrammatic representation, is written $|\mathbf{A}|$ or sometimes just *A*.

Hence $|\mathbf{A}| \equiv A = \sqrt{A_x^2 + A_y^2}$ in 2D, or $|\mathbf{A}| \equiv A = \sqrt{A_x^2 + A_y^2 + A_z^2}$ in 3D.

• A vector of unit length (magnitude 1) is called a <u>unit vector</u>. The unit vector $\hat{\mathbf{a}}$ in the direction of a vector \mathbf{A} is obtained by dividing the vector by its magnitude $|\mathbf{A}|$ so that

$$\hat{\mathbf{a}} = \frac{\mathbf{A}}{|\mathbf{A}|}$$

A circumflex is frequently used to denote a unit vector.

- The symbols **i**, **j**, and **k** are commonly used to represent unit vectors along the *x*, *y*, and *z* axes. Circumflexes are normally <u>not</u> applied for these special unit vectors.
- Using i, j, and k, a general vector A can be written

 $\mathbf{A} = A_x \mathbf{i} + A_y \mathbf{j} + A_z \mathbf{k}$

• When a vector is used to define position relative to the origin, it is called a <u>position</u> <u>vector</u>. A point P with coordinates (x, y, z) is duly defined by the vector

$$\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

Since $|\mathbf{r}| \equiv r = \sqrt{x^2 + y^2 + z^2}$, the unit vector in the direction of **r** is

$$\hat{\mathbf{r}} = \frac{\mathbf{r}}{|\mathbf{r}|} \equiv \frac{\mathbf{r}}{r} = \frac{\mathbf{r}}{\sqrt{x^2 + y^2 + z^2}}$$

- Two vectors are identical if they have the same magnitude and direction. Line of action is not part of the definition of a vector.
- Multiplying a vector by a scalar factor is straightforward. For example, the vector 3A has three times the magnitude of A and points in the same direction. In terms of components, $3\mathbf{A} = (3A_x, 3A_y, 3A_z)$. Similarly the vector $-\mathbf{A}$ has the same magnitude

as A but points in the reverse direction; its components are $(-A_x, -A_y, -A_z)$.

• Vectors **A** and **B** are added simply by adding their components so that

$$\mathbf{C} = \mathbf{A} + \mathbf{B} = (A_x + B_y)\mathbf{i} + (A_y + B_y)\mathbf{j} + (A_z + B_z)\mathbf{k}$$

Hence $C_x = A_x + B_x$ etc. Geometrically one obtains the resultant vector **C** by placing the tail of **B** at the head of **A** (or vice versa) and completing the triangle.

Vector Multiplication

There are two types of vector multiplication:

• The <u>scalar product</u>, so called because the results is a <u>scalar</u> quantity (and also called the <u>dot product</u> because a dot is the symbol used) is defined as

 $\mathbf{A} \bullet \mathbf{B} = |\mathbf{A}| |\mathbf{B}| \cos \theta$

where $|\mathbf{A}|$ and $|\mathbf{B}|$ are the magnitudes of the two vectors and θ is the angle between the vectors. In terms of components,

 $\mathbf{A} \bullet \mathbf{B} = A_x B_x + A_y B_y + A_z B_z$

• The <u>vector product</u>, so called because the result is a <u>vector</u> quantity (and also called the <u>cross product</u> because a cross is the symbol commonly used) is defined as

 $\mathbf{A} \times \mathbf{B} = |\mathbf{A}| |\mathbf{B}| \sin \theta \,\hat{\mathbf{n}}$ (some books use the symbolism $\mathbf{A} \wedge \mathbf{B}$ for the vector product) where $\hat{\mathbf{n}}$ is a unit vector perpendicular to the plane of \mathbf{A} and \mathbf{B} , directed such that \mathbf{A} , \mathbf{B} , and $\hat{\mathbf{n}}$ form a right-handed system (see Fact Sheet 3). In terms of components

$$\mathbf{A} \times \mathbf{B} = (A_y B_z - A_z B_y)\mathbf{i} + (A_z B_x - A_x B_z)\mathbf{j} + (A_x B_y - A_y B_x)\mathbf{k}$$

In determinant form (see later in the course), the vector product can be written

$$\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

1

• From the definitions, it is easy to see that, whereas the scalar product is commutative, the vector product is non-commutative i.e.

 $\mathbf{A} \bullet \mathbf{B} = \mathbf{B} \bullet \mathbf{A}$ but $\mathbf{A} \times \mathbf{B} = -\mathbf{B} \times \mathbf{A}$

• The unit vectors **i**, **j**, and **k** obey the following fairly obvious scalar product rules:

 $\mathbf{i} \bullet \mathbf{i} = \mathbf{j} \bullet \mathbf{j} = \mathbf{k} \bullet \mathbf{k} = 1$

but the scalar product of all *unlike* pairs is zero, i.e.

 $\mathbf{i} \bullet \mathbf{j} = \mathbf{j} \bullet \mathbf{k} = \mathbf{k} \bullet \mathbf{i} = 0$

• The vector product of any vector with itself is always zero so

 $\mathbf{i} \times \mathbf{i} = \mathbf{j} \times \mathbf{j} = \mathbf{k} \times \mathbf{k} = 0$. Indeed, the vector product of two parallel vectors equals zero.

Provided a right-handed system of axes is in use

 $i \times j = k \quad j \times k = i \quad k \times i = j$

 $\mathbf{j} \times \mathbf{i} = -\mathbf{k}$ $\mathbf{k} \times \mathbf{j} = -\mathbf{i}$ $\mathbf{i} \times \mathbf{k} = -\mathbf{j}$

Note that the sign is positive when the three unit vectors are in <u>cyclic order</u> (i j k i j k), and negative otherwise (see Fact Sheet 3).

• Note that right-handedness occurs both in the definition of the vector product, and in the definition of a right-handed set of *xyz* axes. Failure to adhere strictly to these rules will lead to sign errors.

Supplement – Additional material on the cross product

The cross product of two vectors is defined by

$$\mathbf{A} \times \mathbf{B} = |\mathbf{A}| |\mathbf{B}| \sin \theta \, \hat{\mathbf{n}}$$

where $\hat{\mathbf{n}}$ is a unit vector perpendicular to the plane of **A** and **B**, directed such that **A**, **B**, and $\hat{\mathbf{n}}$ form a right-handed system (see Fact Sheet 3).

In particular, it follows that,

 $i \times j = k$ $j \times k = i$ $k \times i = j$ $j \times i = -k$ $k \times j = -i$ $i \times k = -j$

These results apply in a right-handed coordinate system, which should always be used.

We have shown that, in component form,

 $\mathbf{A} \times \mathbf{B} = (A_y B_z - A_z B_y)\mathbf{i} + (A_z B_x - A_x B_z)\mathbf{j} + (A_x B_y - A_y B_x)\mathbf{k}$

The proof of this result is as follows:

$$\mathbf{A} \times \mathbf{B} = (A_x \mathbf{i} + A_y \mathbf{j} + A_z \mathbf{k}) \times (B_x \mathbf{i} + B_y \mathbf{j} + B_z \mathbf{k})$$

= $A_x B_x \mathbf{i} \times \mathbf{i} + A_y B_y \mathbf{j} \times \mathbf{j} + A_z B_z \mathbf{k} \times \mathbf{k}$
+ $A_x B_y \mathbf{i} \times \mathbf{j} + A_y B_x \mathbf{j} \times \mathbf{i}$
+ $A_y B_z \mathbf{j} \times \mathbf{k} + A_z B_y \mathbf{k} \times \mathbf{j}$
+ $A_z B_x \mathbf{k} \times \mathbf{i} + A_x B_z \mathbf{i} \times \mathbf{k}$

The first three terms are zero because $\mathbf{i} \times \mathbf{i} = 0$ etc. Using the fact that $\mathbf{i} \times \mathbf{j} = -\mathbf{j} \times \mathbf{i}$ etc, leads to the result in the box above. The result can be written in determinant form (see later in the course) as

$$\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$