Fact Sheet 11 - Matrices II: Rotation

Consider a vector $\mathbf{r}=\binom{x}{y}$ in the unprimed coordinate system, with coordinates $\mathbf{r}^{\prime}=\binom{x^{\prime}}{y^{\prime}}$ in the primed system, rotated clockwise by an angle θ with respect to the unprimed system, see diagram. It is easy to show that
$\binom{x^{\prime}}{y^{\prime}}=\binom{x \cos \theta-y \sin \theta}{x \sin \theta+y \cos \theta}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)\binom{x}{y}$
which on matrix form reads $\mathbf{r}^{\prime}=\mathbf{R}_{\theta} \mathbf{r}$.
The mathematics has been set up to transform the coordinates of a given vector from one set of axes (x, y) to another (x^{\prime}, y^{\prime}).

However, an alternative interpretation is possible, namely that the rotation matrix is transforming one vector \mathbf{r} into another \mathbf{r} ' against fixed axes. This second interpretation is shown in the diagram to the left. Note that according to this interpretation, the matrix $\mathbf{R}_{\theta}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$
represents an anti-lockwise rotation of the vector \mathbf{r} by an angle θ to create \mathbf{r} ' with fixed axis, whereas, in the first interpretation, the same matrix represents a clockwise rotation of the axes by an angle θ for a given vector.

In 3D, an anti-clockwise rotation of the vectors by an angle θ about the +z -axis is represented by a matrix of the form $\mathbf{R}_{\theta}^{z}=\left(\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right)$.
Remember that the $+z$-axis comes out of the paper in a right-handed system (see Fact Sheet 3), and that it is sensible to define the sense of rotation around the $+z$ direction. Within this convention, the matrix given represents a clockwise rotation of axes for a given vector, or an anti-clockwise rotation of a vector with respect to fixed axes. By analogy, rotations about the x - and y-axes by an angle θ are of the form $\mathbf{R}_{\theta}^{x}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta\end{array}\right)$ and $\mathbf{R}_{\theta}^{y}=\left(\begin{array}{ccc}\cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta\end{array}\right)$, respectively.

Matrices II: The Eigenvalue problem

The eigenvalue problem is defined by the equation
$\mathbf{T v}=\lambda \mathbf{v}$,
where \mathbf{T} is a square matrix, and \mathbf{v} is a column matrix. Hence, one is seeking vectors \mathbf{v}, known as eigenvectors, that are unchanged in direction by \mathbf{T}, but are simply scaled in magnitude by the factors λ, known as eigenvalues. Equation (1) can be written
$\mathbf{T v}=\lambda \mathbf{I} \mathbf{v}$
or, by simple re-arrangement,
$(\mathbf{T}-\lambda \mathbf{I}) \mathbf{v}=\mathbf{0}$,
where \mathbf{I} is the identity matrix. Equation (3) is a homogeneous equation where the matrix of coefficients is $\mathbf{T}-\lambda \mathbf{I}$. The homogeneous equation has non-trivial solutions $\mathbf{v} \neq \mathbf{0}$ if and only if the determinant of the matrix of coefficients is zero, that is, $\operatorname{det}(\mathbf{T}-\lambda \mathbf{I})=0$.

Equation (4) is the so-called characteristic equation. Note the Eqs (1)-(4) are valid in $\mathbb{R}^{n}, n \geq 2$. In \mathbb{R}^{2}, that is, for a 2×2 system, Eq.(1) reads

$$
\left(\begin{array}{cc}
a_{11} & a_{12} \tag{5}\\
a_{21} & a_{22}
\end{array}\right)\binom{x}{y}=\lambda\binom{x}{y}
$$

and Eq.(3) reads
$\left(\begin{array}{cc}a_{11}-\lambda & a_{12} \\ a_{21} & a_{22}-\lambda\end{array}\right)\binom{x}{y}=0$.
Equation (6) represents is a homogeneous linear equation (two equations with two unknowns):
$\left(a_{11}-\lambda\right) x+a_{12} y=0$
$a_{21} x+\left(a_{22}-\lambda\right) y=0$.
These equations have non-trivial solutions (in addition to the trivial solution $x=y=0$) if and only if the determinant of the matrix of coefficients is zero, that is,
$\left|\begin{array}{cc}a_{11}-\lambda & a_{12} \\ a_{21} & a_{22}-\lambda\end{array}\right|=\left(a_{11}-\lambda\right)\left(a_{22}-\lambda\right)-a_{21} a_{12}=0$
or in other words
$\lambda^{2}-\left(a_{11}+a_{22}\right) \lambda+\left(a_{11} a_{22}-a_{21} a_{12}\right)=0$.
The two roots of this quadratic equation are
$\lambda_{1,2}=\frac{\left(a_{11}+a_{22}\right) \pm \sqrt{\left(a_{11}-a_{22}\right)^{2}+4 a_{21} a_{12}}}{2}$
and λ_{1} and λ_{2} are the two eigenvalues of \mathbf{T}.

In the case treated in the Lecture, $\mathbf{T}=\left(\begin{array}{cc}5 & -1 \\ -1 & 5\end{array}\right)$ and $\lambda_{1,2}=\frac{10 \pm 2}{2}=\left\{\begin{array}{l}6 \\ 4\end{array}\right.$. These eigenvalues must now be inserted in turn in Eq.(7) to find the associated eigenvectors. One obtains
$\lambda_{1}=6 ; \quad-x_{1}-y_{1}=0 \Leftrightarrow y_{1}=-x_{1} ; \quad \mathbf{v}_{1}=\binom{1}{-1} ; \quad \hat{\mathbf{v}}_{1}=\binom{1 / \sqrt{2}}{-1 / \sqrt{2}}$,
$\lambda_{2}=4 ; \quad x_{2}-y_{2}=0 \Leftrightarrow y_{2}=x_{2} ; \quad \mathbf{v}_{2}=\binom{1}{1} ; \quad \hat{\mathbf{v}}_{2}=\binom{1 / \sqrt{2}}{1 / \sqrt{2}}$,
where $\hat{\mathbf{v}}_{1}, \hat{\mathbf{v}}_{2}$ gives the eigenvectors in normalised form. Note that Eq.(5) can be written
$\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)\binom{x_{1}}{y_{1}}=\lambda_{1}\binom{x_{1}}{y_{1}}$,
$\left(\begin{array}{cc}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)\binom{x_{2}}{y_{2}}=\lambda_{2}\binom{x_{2}}{y_{2}}$.
These last two equations can be combined to read
$\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)\left(\begin{array}{ll}x_{1} & x_{2} \\ y_{1} & y_{2}\end{array}\right)=\left(\begin{array}{ll}\lambda_{1} x_{1} & \lambda_{2} x_{2} \\ \lambda_{1} y_{1} & \lambda_{2} y_{2}\end{array}\right)=\left(\begin{array}{ll}x_{1} & x_{2} \\ y_{1} & y_{2}\end{array}\right)\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$.
Introducing the matrix of the eigenvectors $\mathbf{V}=\left(\begin{array}{ll}x_{1} & x_{2} \\ y_{1} & y_{2}\end{array}\right)$ and the diagonal matrix of the eigenvalues $\mathbf{S}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$, Eq.(13) reads
$T V=V S$.
Multiplying both sides of Eq.(14) from the left by \mathbf{V}^{-1}, the inverse of \mathbf{V}, yields the important result $\mathbf{V}^{-1} \mathbf{T V}=\mathbf{S}$.

The matrices \mathbf{T} and \mathbf{S} are said to be "similar", and \mathbf{V} is said to "diagonalise \mathbf{T} in a similarity transformation". Note that Eq.(13) applies irrespective of whether the eigenvectors have been normalised before the formation of \mathbf{V}. However, in the special case where \mathbf{T} is symmetric (i.e., $a_{21}=a_{12}$ as in the numerical example given above), it can be shown that \mathbf{v}_{1} and \mathbf{v}_{2} are orthogonal. And if the vectors are also normalised, see Eq.(11), then \mathbf{V} becomes an orthogonal matrix, in which case $\mathbf{V}^{-1}=\mathbf{V}^{t}$, the transpose of the matrix \mathbf{V}. For instance, in the example above,
$\mathbf{V}=\left(\begin{array}{cc}1 / \sqrt{2} & 1 / \sqrt{2} \\ -1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right)$ and $\mathbf{V}^{-1}=\mathbf{V}^{t}=\left(\begin{array}{cc}1 / \sqrt{2} & -1 / \sqrt{2} \\ 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right)$. In this case
$\mathbf{V}^{-1} \mathbf{T V}=\left(\begin{array}{cc}1 / \sqrt{2} & -1 / \sqrt{2} \\ 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right)\left(\begin{array}{cc}5 & -1 \\ -1 & 5\end{array}\right)\left(\begin{array}{cc}1 / \sqrt{2} & 1 / \sqrt{2} \\ -1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right)=\left(\begin{array}{ll}6 & 0 \\ 0 & 4\end{array}\right)=\mathbf{S}$.
Note that for a 3×3 system, Eq.(9) becomes a cubic equation, for a 4×4 system, it's a quartic and so on. If you have to solve a cubic equation, you may be able to guess one of the roots, λ_{1}, then divide the cubic equation with the factor $\left(\lambda-\lambda_{1}\right)$, to obtain a quadratic equation and then solve that to identify the other two roots λ_{2}, λ_{3}.

