Mathematical Techniques II: Algebra (Physics Year 1 Term 1) FS10 (L13) 26/11/2007

Fact Sheet 10 - Geometry II in 3-dimensional space

A. The equation of the line of intersection of two planes

1. Find any point \mathbf{r}_{0} on the line of intersection. Do this by choosing an arbitrary value for one of the three components (say $x=0$), and solving the two plane equations for the other two variables (y and z in this case).
2. The direction vector $\mathbf{d} \perp \mathbf{n}_{1} \& \mathbf{d} \perp \mathbf{n}_{2}$. Hence, the direction of the line of intersection is the cross product of normal vectors \mathbf{n}_{1} and \mathbf{n}_{2} for the two planes, i.e., $\mathbf{d}=\mathbf{n}_{1} \times \mathbf{n}_{2}$.
3. The equation is $\mathbf{r}=\mathbf{r}_{0}+\lambda \mathbf{d}$ in vector form. Put it in component form if you like.

B. The (acute) angle between two planes

The angle $\theta=\cos ^{-1}\left(\hat{\mathbf{n}}_{1} \cdot \hat{\mathbf{n}}_{2}\right)$, where $\hat{\mathbf{n}}_{1}$ and $\hat{\mathbf{n}}_{2}$ are unit normal vectors to the planes.
C. The minimum distance d from a point P to a plane

1. Find any point A on the plane by choosing arbitrary values of two of the components and using the equation of the plane to find the third.
2. The minimum distance is $d=|\overrightarrow{A P} \bullet \hat{\mathbf{n}}|$ where $\hat{\mathbf{n}}$ is a unit normal vector.

D. The minimum distance d from a point P to a line

1. Find any point A on the line by choosing an arbitrary value of one the components and using the equation of the line to find the other two.
2. The minimum distance from P to the line is $d=|\overrightarrow{A P} \times \hat{\mathbf{d}}|$ where $\hat{\mathbf{d}}$ is a unit vector in the direction of the line.

E. The minimum distance d between two skew lines

1. Find arbitrary points A_{1} and A_{2} on each line, and hence the vector $\overrightarrow{A_{1} A_{2}}$ joining them.
2. Find a unit vector normal to both lines from $\hat{\mathbf{n}}=\frac{\mathbf{d}_{1} \times \mathbf{d}_{2}}{\left|\mathbf{d}_{1} \times \mathbf{d}_{2}\right|}$ where \mathbf{d}_{1} and \mathbf{d}_{2} are the respective direction vectors.
3. The minimum distance is $d=\left|\overrightarrow{A_{1} A_{2}} \bullet \hat{\mathbf{n}}\right|$.

F. The condition for two lines to intersect

If the minimum distance between them is zero, i.e. $d=\left|\overrightarrow{A_{1} A_{2}} \cdot \hat{\mathbf{n}}\right|=0$, the lines intersect.
Reference Information (see Fact Sheet 4 for further details)
For the plane $a x+b y+c z=k$, the two unit normal vectors are $\pm \hat{\mathbf{n}}= \pm \frac{\mathbf{n}}{|\mathbf{n}|}= \pm \frac{a \mathbf{i}+b \mathbf{j}+c \mathbf{k}}{\sqrt{a^{2}+b^{2}+c^{2}}}$ and the minimum (shortest, perpendicular) distance from the origin to the plane is given by $d=\frac{k}{\sqrt{a^{2}+b^{2}+c^{2}}}$.
This result can also be obtained by using recipe C in the case where P is the origin. An arbitrary point on the plane is ($k / a, 0,0$), which is defined by the position vector $\mathbf{r}=k \mathbf{i} / a$. From the recipe, the minimum distance to the plane is $d=|\mathbf{r} \cdot \hat{\mathbf{n}}|=\frac{k}{\sqrt{a^{2}+b^{2}+c^{2}}}$ as before.

