Classwork 8 - A Christmas Medley

- Enter into the spirit of the festive season with question 1.
- Encounter a mix of cooking and matrices in question 2.
- \quad Take an excursion into complex matrices in question 3.
- Go hunting for eigenvectors and eigenvalues in question 4.

I wish you all a Merry Christmas and a Happy New Year - may you all enjoy the winter-break!

1. Santa's sleigh is approaching Imperial College London, which is, of course, the origin of all right-handed coordinate systems. Santa, coming from Lapland (personally, I believe Santa resides in Greenland!), is heading in a southwesterly direction and is descending steeply on the track $\mathbf{r}=\lambda(-\mathbf{i}-\mathbf{j}-\mathbf{k})$ where x is east, y is north, and z is the upwards vertical. The wicked witch/DarthVader/Tash/Voldemort/Sauron/Kim
(enter your favourite choice) is rising rapidly from the depths on the path determined by $\mathbf{r}=-7.5(\mathbf{j}+\mathbf{k})+\mu(2 \mathbf{i}+5 \mathbf{j}+3 \mathbf{k})$ to intercept Santa and steal your presents!

Find the distance of closest approach of the two tracks. Units are à choix - you may want to make them kilometres to ensure that Santa arrives safely with your presents ©
[Should you need a hint, please see Fact Sheet 10.]
2. I am indebted to Dr Michael Coppins for this next question.

Boltzmann's Bakery uses the finest flour, margarine, sugar, currants, and eggs to make its celebrated range of products:

- Alternating Currant Cake (cc made per day) Each cake uses 0.22 kg flour, 0.15 kg margarine, 0.15 kg sugar, 0.31 kg currants, and 2 eggs.
- Heaviside Layer Cake (lc made per day)

Each cake uses 0.22 kg flour, 0.20 kg margarine, 0.18 kg sugar, and 3 eggs.

- Fermat's Last Garibaldi Biscuits (gb made per day)

Each packet uses 0.20 kg flour, 0.08 kg margarine, 0.04 kg sugar, and 0.12 kg currants.

- XY Plain Biscuits ($p b$ made per day)

Each packet uses 0.22 kg flour, and 0.05 kg margarine.
The vector $\mathbf{p}=\left(\begin{array}{c}c c \\ l c \\ g b \\ p b\end{array}\right)$ contains the numbers of each product made per day while $\mathbf{r}=\left(\begin{array}{l}r_{f} \\ r_{m} \\ r_{s} \\ r_{c} \\ r_{e}\end{array}\right)$
represents the quantity of raw materials used per day, where the indices refer to $f=$ flour, $m=$ margarine, $s=$ sugar, $c=$ currants, and $e=$ eggs.
Write down the matrix \mathbf{B} such that $\mathbf{r}=\mathbf{B p}$, and evaluate \mathbf{r} for $\mathbf{p}=\left(\begin{array}{c}100 \\ 120 \\ 80 \\ 50\end{array}\right)$.
3. In this question, the matrix \mathbf{W} has complex elements. The complex conjugate matrix \mathbf{W}^{*} is obtained by taking the complex conjugate of every element of \mathbf{W}.

The matrix \mathbf{W} is defined as $\mathbf{W}=\left(\begin{array}{cc}i & 1+i \\ z & -i\end{array}\right)$ where z is a complex number.
(a) Find z in the case where $\mathbf{W} \mathbf{W}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.
(b) Find z in the case where $\mathbf{W} \mathbf{W}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
(c) In the latter case where $\mathbf{W} \mathbf{W}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, find $\mathbf{W} \mathbf{W}^{*}$.
4. Find the eigenvalues and eigenvectors of the matrices
(i) $\mathbf{A}=\left(\begin{array}{ll}1 & 3 \\ 2 & 2\end{array}\right)$
(ii) $\quad \mathbf{B}=\left(\begin{array}{lll}2 & 3 & 0 \\ 3 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$
(iii) $\mathbf{C}=\left(\begin{array}{lll}1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 2\end{array}\right)$.

Un-normalised eigenvectors will do. Note that in (ii) and (iii), you will have to solve a cubic equation for the eigenvalues. However, the eigenvalues are (conveniently) integers in both cases. Therefore, once you have found one of them, λ_{1}, by inspection, you can divide the cubic equation through by $\left(\lambda-\lambda_{1}\right)$ and solve the resulting quadratic equation to find λ_{2} and λ_{3}.

