
Mathematical Techniques II: Algebra (Physics Year 1 Term 1)     CW8 10/12/2007 

Classwork 8 – A Christmas Medley 
• Enter into the spirit of the festive season with question 1.   

• Encounter a mix of cooking and matrices in question 2.   

• Take an excursion into complex matrices in question 3.   

• Go hunting for eigenvectors and eigenvalues in question 4.   

I wish you all a Merry Christmas and a Happy New Year – may you all enjoy the winter-break! 

==================================================================== 

1. Santa’s sleigh is approaching Imperial College London, which is, of course, the origin of 
all right-handed coordinate systems. Santa, coming from Lapland (personally, I believe 
Santa resides in Greenland!), is heading in a southwesterly direction and is descending 
steeply on the track ( )λ= − − −r i j k

5 3 )

 where x is east, y is north, and z is the upwards 
vertical. The wicked witch/DarthVader/Tash/Voldemort/Sauron/Kim …….………………. 
(enter your favourite choice) is rising rapidly from the depths on the path determined by 

7.5( ) (2μ= − + +r + +j k i j k  to intercept Santa and steal your presents! 

Find the distance of closest approach of the two tracks. Units are à choix – you may want 
to make them kilometres to ensure that Santa arrives safely with your presents ☺. 

[Should you need a hint, please see Fact Sheet 10.]   

2. I am indebted to Dr Michael Coppins for this next question. 

Boltzmann’s Bakery uses the finest flour, margarine, sugar, currants, and eggs to make 
its celebrated range of products:  

• Alternating Currant Cake (cc made per day) 
Each cake uses 0.22 kg flour, 0.15 kg margarine, 0.15 kg sugar, 0.31 kg currants, and 
2 eggs.  

• Heaviside Layer Cake (lc made per day) 
Each cake uses 0.22 kg flour, 0.20 kg margarine, 0.18 kg sugar, and 3 eggs.  

• Fermat’s Last Garibaldi Biscuits (gb made per day)  
Each packet uses 0.20 kg flour, 0.08 kg margarine, 0.04 kg sugar, and 0.12 kg currants.   

• XY Plain Biscuits (pb made per day)   
Each packet uses 0.22 kg flour, and 0.05 kg margarine. 

The vector 
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represents the quantity of raw materials used per day, where the indices refer to f = flour, 
m = margarine, s = sugar, c = currants, and e = eggs.  

Write down the matrix B such that , and evaluate r for . =r Bp
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3. In this question, the matrix W has complex elements.  The complex conjugate matrix  

is obtained by taking the complex conjugate of every element of W. 
*W

  

The matrix W is defined as 
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W  where z is a complex number. 

(a) Find z in the case where . 
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(b) Find z in the case where . 
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(c) In the latter case where , find 
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4. Find the eigenvalues and eigenvectors of the matrices 
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1 2 1
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Un-normalised eigenvectors will do. Note that in (ii) and (iii), you will have to solve a 
cubic equation for the eigenvalues.  However, the eigenvalues are (conveniently) integers 
in both cases. Therefore, once you have found one of them, 1λ , by inspection, you can 
divide the cubic equation through by ( 1)λ λ−  and solve the resulting quadratic equation to 
find 2 3 and λ .  λ
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